Dynamic Modulus of Hot Mix Asphalt

FINAL REPORT

Submitted by

Dr. Thomas Bennert* Senior Research Engineer

* Dept. of Civil & Environmental Engineering Center for Advanced Infrastructure & Transportation (CAIT) Rutgers, The State University Piscataway, NJ 08854-8014

NJDOT Research Project Manager Dr. Nazhat Aboobaker

In cooperation with

New Jersey Department of Transportation Bureau of Research and Technology and U.S. Department of Transportation Federal Highway Administration

Disclaimer Statement

"The contents of this report reflect the views of the author(s) who is (are) responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the New Jersey Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation."

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.	2. Covernment Ac	accion No. 3	Recipient's Catal	
FHWA-NJ-2009-011	2. Government Act			59 110.
4. Title and Subtitle Dynamic Modulus of Hot Mix As	sphalt	5. Ju	Report Date N e - 2009	
		6. P CA	erforming Organiz	zation Code
7. Author(s) Dr. Thomas Bennert		8. F FH	Performing Organiz	zation Report No.)11
9. Performing Organization Name and A	ddress	10.	Work Unit No.	
New Jersey Department of Trans CN 600 Trenton, NJ 08625	portation	11.	Contract or Gran	t No.
12 Spannering Agapay Name and Adds		13.	Type of Report ar	nd Period Covered
Federal Highway Administration	ess	Fir 1/2	al Report 2007 – 6/2009	
U.S. Department of Transportation Washington, D.C.	1	14.	Sponsoring Agen	cv Code
15. Supplementary Notes		+		
Email Address: bennert@eden.ru	tgers.edu			
16. Abstract One of the most critical parameters (MEPDG) is the dynamic modulus (represents the stiffness of the aspha dynamic modulus is one of the key paramic modulus is one of the key paramic modulus (i.e. – Level 2 Cooperative Highway Research Profor regional areas. The major concert accuracy of the design. Hence, mai (SN) with the old AASHTO method. There were three primary objectives test, AASHTO TP62-07, was evaluate recommend a modified procedure with dynamic modulus catalog for use with plant-produced and laboratory-compliant surrently in the MEPDG for N the accuracy of two commonly utilizand 2) Hirsch Model. The database between dynamic modulus and fatig	needed for the upd E*), which will be u alt material when te parameters used to e that accompanie and 3 inputs). Ho gram (NCHRP) re ern is that state ago king the new mech s of the research st ted to determine the ith better precision th the Mechanistic pacted samples of ew Jersey. The the ed dynamic modul developed during jue cracking and re	coming Mechanistic Emp ised for flexible pavement ested in a compressive-to o evaluate both rutting and is the MEPDG also provi- wever, caution has alread searchers as to the apprencies will use these defi- anistic procedure no bet udy. First, the current we have relative precision of the n. The second objective Empirical Pavement De various asphalt mixtures ind primary objective of to us prediction equations; the study also led to the utting performance of asp	birical Pavement at design. The dy ype, repeated load and fatigue crackin des general defa dy been issued to opriateness of the ault values blindl ter than using a se ersion of the dyna ter test method, a of the study was sign Guide (MEF 5. This would sup he research stud 1) Witczak Predi development of ohalt mixtures.	Design Guide ynamic modulus ad test. The ng distresses in nult parameters for by the National ese parameters y and sacrifice structural number amic modulus nd if required, to develop a 2DG) by testing bercede Level 2 ly was to assess ction Equation correlations
^{17. Key Words} Dynamic Modulus, Precision, Sim Performance Tester, Catalog, Pre Equation	ple diction	18. Distribution Statemen	t	
19. Security Classif (of this report)	20. Security Cla	ssif. (of this page)	21. No of Pages	22. Price
Unclassified	Unclassified		75 pp	

Form DOT F 1700.7 (8-69)

TABLE OF CONTENTS

ABSTRACT	1
OBJECTIVE	2
PHASE 1 - PRECISION OF DYNAMIC MODULUS	2
Testing Program	3
HMA Mixture Design and Material Preparation	5
Analysis of Test Results	5
Bulk Specific Gravity of Test Specimens	5
Dynamic Modulus Test Results	6
PRECISION STATEMENT ASSESSMENT	10
Analysis of Variance	12
Development of Precision Statements for AASHTO TP62-07	15
Influence on MEPDG Distress Predictions	16
Reduction in Test Temperature Data	18
PHASE 2 – DYNAMIC MODULUS CATALOG DEVELOPMENT	20
Data Analysis	21
RESULTS OF DYNAMIC MODULUS CATALOG	24
Asphalt Binder Inputs	25
Dynamic Modulus Test Results	27
Low Temperature Test Results	29
PHASE $3 - EVALUATION OF PREDICTION FOUATIONS$	31
Prediction Equation Testing Procedure	32
PHASE 4 - DYNAMIC MODULUS VS ASPHALT MIXTURE PERFORMANCE	36
Dynamic Modulus and Rutting Resistance	36
Dynamic Modulus and Fatigue Cracking	44
CONCLUSIONS AND RECOMMENDATIONS	53
Conclusions – Precision of the Dynamic Modulus Test	53
Conclusions – Evaluation of Prediction Equations	55
Conclusions – Development of Proposed Performance Criteria Using the Dynamic	00
Modulus Test	55
Recommendations - Precision of the Dynamic Modulus Test	56
Recommendations – Evaluation of Prediction Equations	56
Recommendations – Use of the Dynamic Modulus Catalog	57
Recommendations – Use of Dynamic Modulus for Performance Indicator	57
REFERENCES	52
	61

LIST OF FIGURES	Page #
Figure 1 – Different Testing Machines Used to Measure the Dynamic Modulus of Hot Mix Asphalt	3
Figure 2 – Black Space Diagrams: a) Non-linearity 9.5mm Mix; b) SPT's Only - 9.5mm; c) Non-SPT - 25mm; d) SPT's Only - 25mm	8
Figure 3 – Master Stiffness Curve for Labs #2, #5, #6, and #7 for the 25mm Mix	10
Figure 4 – Percent Variance Components for E* and Phase Angle	13
Figure 5 – Percent of Laboratory Variability for SPT and non-SPT Devices	14
Figure 6 – Generated Master Stiffness Curve for Trap Rock Industries 12H76 Mix	23
Figure 7 – Superpave Binder Test Data for Level 1 Asphalt Binder Inputs in the MEPDG	25
Figure 8 – Level 1 Dynamic Modulus Input in the MEPDG	28
Figure 9 – Low Temperature Input Parameters from MEPDG	29
Figure 10 – Witczak Prediction Equations Predictions – All Data	33
Figure 11 – Hirsch Model Predictions – All Data	34
Figure 12 – Witczak Prediction Equation – PG76-22 Binder Mixes	34
Figure 13 – Hirsch Model Predictions – PG76-22 Binder Mixes	35
Figure 14 – Witczak Prediction Equations – PG64-22 Binder Mixes	35
Figure 15 – Hirsch Model Predictions – PG64-22 Binder Mixes	36
Figure 16a through g – Dynamic Modulus vs Flow Number for Plant Produced	37 – 40
Asphalt Mixtures in New Jersey	
Figure 17 – Minimum Dynamic Modulus to Limit Rutting Potential of Asphalt Mixture	41
Figure 18 – Limiting Rutting Potential Graph for NJDOT 9.5M76 with 15% RAP	42
Figure 19 – Limiting Rutting Potential Chart for NJDOT 12.5M76 with 0% RAP	43
Figure 20 – Limiting Rutting Potential Chart for NJDOT 12.5M76 with 25% RAP	43
Figure 21 – Limiting Rutting Potential Chart for NJDOT 12.5M76 with 25% RAP (Produced at 270F with Evotherm 3G)	44
Figure 22 – Picture of the Overlay Tester (Chamber Door Open)	45
Figure 23 a through f – Correlations Between the Overlay Tester and Dynamic Modulus at 20C and Different Loading Frequencies	46 - 48
Figure 24 – Proposed Limiting Fatigue Cracking Graph for Use with the Dynamic Modulus Test	49
Figure 25 – Proposed Limiting Fatigue Cracking Potential for Reflective Crack Relief Interlayer Mixture	50
Figure 26 – Proposed Limiting Fatigue Cracking Potential for a 4.75mm Rich Bottom Laver Mixture	51
Figure 27 – Limiting Fatigue Cracking Potential for a NJDOT 12.5M76 with 25% RAP	52
Figure 28 – Proposed Limiting Fatigue Cracking Potential for a NJDOT 12.5M76 with 25% RAP (Produced at 270F with Evotherm 3G)	53

LIST OF TABLES	Page #
Table 1 – Test Equipment and Accessories Used by Different Laboratories Table 2 – Mixture Design Properties Used for Dynamic Modulus Test Specimens	4 5
Table 3 – Average and Range of Micro-strain Level for Four Different Laboratories for the 25mm Mix	9
Table 4 – Precision Statement Generated for AASHTO TP62-07 and Potential Modifications	16
Table 5 – MEPDG Predicted Pavement Distresses for Different Dynamic Modulus Testing/Analysis Schemes	18
Table 6 - NCHRP Report 614 Recommended Testing Temperatures and Loading Frequencies	20
Table 7 – Example of Resultant Dynamic Modulus Values from Reduced Testing Procedure	24
Table 7 – Conventional Binder Test Results for Level 1 Inputs	26
Table 8 – Superpave Binder Tests for Level 1 Inputs	27
Table 9 – NJDOT Level 1 Low Temperature Cracking Input Parameters for the MEPDG	30
Table 10 - Minimum Flow Number Requirements (adapted from NCHRP Project 9-33)	35
Table 11 – Minimum Required Dynamic Modulus to Limit Rutting Potential of Asphalt Mixtures	41
Table 12 – Dynamic Modulus Performance Bands for Limiting Fatigue Cracking Potential	49

ABSTRACT

One of the most critical parameters needed for the Mechanistic Empirical Pavement Design Guide (MEPDG) is the dynamic modulus (E*), which is used for flexible pavement design. The dynamic modulus represents the stiffness of the asphalt material when tested in a compressive-type, repeated load test. The dynamic modulus is one of the key parameters used to evaluate both rutting and fatigue cracking distress predictions in the MEPDG. The computer software that will accompany the MEPDG provides general default parameters for the dynamic modulus. However, caution has already been issued by the National Cooperative Highway Research Program (NCHRP) researchers as to the appropriateness of these parameters for regional areas. The major concern is that state agencies will use these default values blindly and sacrifice accuracy of the design. Hence, making the new mechanistic procedure no better than using a structural number (SN) with the old AASHTO method.

To ensure that the New Jersey Department of Transportation (NJDOT) will be prepared for the upcoming design procedure, a research project was conducted to evaluate the dynamic modulus test and parameters. The research project encompassed evaluating the dynamic modulus of approximately twenty different hot mix asphalt mixtures that are currently approved by the NJDOT. The dynamic modulus (E*) values for each mixture evaluated is represented using a technique called a master stiffness curve. The E* master stiffness curve is a single curve that represents the asphalt materials' stiffness relationship to loading frequency and temperature. This procedure is called Level I for the MEPDG and will provide the most accurate distress predictions during design. The measured E* values were also compared to that of the Witczak predictive equation and the Hirsch model. The Witczak predictive equation has been selected by the NCHRP researchers for the Level II and III design in the MEPDG. However, many researchers feel that perhaps the Hirsch model provides more accurate results. The Witczak predictive equation is based on the mix gradation, asphalt binder viscosity properties, and volumetric properties of the hot mix asphalt, while the Hirsch model is based on the asphalt binder stiffness (G*) and the voids in mineral aggregate (VMA) and voids filled with asphalt (VFA). The accuracy of the predictive equations was compared to the measured laboratory results of the NJ Dynamic Modulus Catalog and recommendations regarding their appropriateness provided.

Another important aspect of the research project was the development of a "precisiontype statement" for use by the NJDOT regarding the current dynamic modulus test protocol (AASHTO TP62-07). Currently, a precision statement does not exist regarding multiple laboratories. Eight laboratories were contacted and asked to participate in a round robin study regarding the dynamic modulus test. All laboratories are, or were at one time, AMRL accredited for hot mix asphalt. The precision assessment provided valuable information regarding the expected precision the NJDOT can expect if dynamic modulus testing is to be conducted by different laboratories and test equipment. Based on the precision testing, a modified dynamic modulus testing procedure was recommended to increase the general precision of the test results. During the development of the Dynamic Modulus catalog, repeated load and Overlay Tester tests were conducted on the identical mixtures. Correlations were developed between the dynamic modulus and rutting (Flow Number – repeated load) and fatigue cracking (Overlay Tester) tests. The correlations allow the use of the dynamic modulus test for to test for rutting and fatigue cracking prone asphalt mixtures.

OBJECTIVE

There were three primary objectives of the research study. First, the current version of the dynamic modulus test, AASHTO TP62-07, was evaluated to determine the relative precision of the test method, and if required, recommend a modified procedure with better precision. The second objective of the study was to develop a dynamic modulus catalog for use with the Mechanistic Empirical Pavement Design Guide (MEPDG) by testing plant-produced and laboratory-compacted samples of various asphalt mixtures. The third primary objective of the research study was to assess the accuracy of two commonly utilized dynamic modulus prediction equations; 1) Witczak Prediction Equation and 2) Hirsch Model.

The database developed during the study also led to the development of correlations between dynamic modulus and fatigue cracking and rutting performance of asphalt mixtures. The fatigue cracking comparisons were generated using the Overlay Tester and field performance criteria developed by the Texas Department of Transportation (TxDOT). The rutting comparisons were generated using the Flow Number parameter and field performance criteria developed during the NCHRP 9-33, *A Mix Design Method for Hot Mix Asphalt (HMA)*.

PHASE 1 - PRECISION OF DYNAMIC MODULUS

With the development and release of the Mechanistic Empirical Pavement Design Guide, MEPDG (1), greater emphasis has been placed on hot mix asphalt (HMA) characterization, in particular, the modulus or stiffness properties. The MEPDG uses HMA stiffness for various environmental conditions, traffic speeds, etc., to calculate pavement strains which are then used to predict pavement distresses. Currently, AASHTO TP62-07. Standard Method of Test for Determining Dynamic Modulus of Hot-Mix Asphalt (2) is recommended to determine the stiffness properties (Dynamic Modulus or Complex Modulus, E*) of HMA. The dynamic modulus can be measured on most servo-hydraulic testing machines capable of producing a controlled, sinusoidal (haversine) compressive load. The testing machine should have the capability of applying a load over a range of frequencies from 0.1 to 25 Hz and stress level up to 2800 kPa (400 psi). For sinusoidal loads, the standard error of the applied load shall be less than 5% (2). An environmental chamber is also required to condition the test specimens at different temperatures. The environmental chamber shall be capable of controlling the temperature of the specimen over a temperature range from -10 to 60°C (14 to 140°F) to an accuracy of ± 0.5°C (1°F). Figure 1 shows some of the different types of testing machines utilized for measuring dynamic modulus of HMA specimens.

Figure 1 – Different Testing Machines Used to Measure the Dynamic Modulus of Hot Mix Asphalt

With the dynamic modulus being one of the prime material inputs required for flexible pavement design/evaluation in the MEPDG, numerous researchers have explored the various factors affecting the dynamic modulus properties, which include aggregate gradation, asphalt binder stiffness, and mixture volumetrics (*3, 4, 5, 6, 7*). These studies have also led to different methodologies to predict the dynamic modulus based on these material properties (*8, 9, 10, 11, 12, 13*). However, none of the studies to date have evaluated the precision of the AASHTO TP62 test method when different laboratories test the same material, nor have they investigated how the precision, or variability among the different laboratories, would affect the predicted distresses of the MEPDG.

Testing Program

A Round Robin testing program was undertaken to assess the testing variability associated with AASHTO TP62-07, *Standard Method of Test for Determining Dynamic Modulus of Hot-Mix Asphalt (HMA)*. The Round Robin testing program consisted of seven (7) different laboratories having the capability of adequately performing AASHTO TP62-07. The laboratories included:

- Advanced Asphalt Technologies (AAT), Sterling, VA.;
- Burns, Cooley, Dennis, Inc. (BCD), Jackson, MS.;
- National Center for Asphalt Technology (NCAT) at Auburn University, AL;
- North Central Superpave Center at Purdue University (Purdue), IN;
- Rutgers Asphalt Pavement Laboratory at Rutgers University (RAPL), NJ;
- Texas Transportation Institute (TTI) at Texas A&M University, TX; and
- Pavement Research Institute of Southeastern Massachusetts at the University of Massachusetts (UMass) Dartmouth, MA.

The Round Robin testing program was designed to test two different HMA, Superpavedesigned HMA mixtures; 9.5mm and 25mm nominal maximum aggregate size (NMAS). Each laboratory was asked to conduct the latest version of AASHTO TP62 on three specimens of each mixture designation (total of six test samples) and to report all results in accordance with AASHTO TP62-07. The collected test data were then evaluated in a precision statement environment, where ASTM E691 was used to evaluate the variability of the test procedure.

Three of the seven laboratories used a Simple Performance Tester (SPT) machine for testing, which possesses some operational characteristics that deviate slightly from the details in AASHTO TP62-07 *Standard Method of Test for Determining Dynamic Modulus of Hot-Mix Asphalt (HMA)*. The main differences are discussed by Bonaquist (*14*) and are summarized below:

- Gauge Length of SPT LVDT's = 70mm; AASHTO TP62-07 specifies 101.6mm;
- SPT Environmental Chamber: 0 °C to 60°C; AASHTO TP62-07 specifies -10°C to 54.4°C;
- SPT Micro-strain Range: 75 to 125; AASHTO TP62-07 specifies 50 to 150;
- No rest periods in-between cycles in SPT; AASHTO TP62-07, Section 11.8 recommends typical rest periods of two minutes; and
- SPT: 10 preconditioning cycles followed by 10 loading cycles; AASHTO TP62-07 specifies a greater number of preconditioning cycles according to Table 6 of AASHTO TP62-07.

Although the above does mention some differences between the SPT test machines and other test machines conforming to AASHTO TP62-07, both seem to be interchangeable and widely acceptable with respect to measuring the dynamic modulus properties of hot mix asphalt. A complete summary of equipment, including gyratory compactors, test machines and accessories used by the different laboratories in this study is shown in Table 1.

Lab No	Gyratory Compactor Type	E* Test Equipment	# of LVDT's	Frictionless End Treatments
# 1 (TTI)	IPC Servopac	UTM-25 (T)	3	Greased Latex
# 2 (Purdue)	Pine	UTM-25 (T)	3	Greased Latex
# 3 (Umass)	Pine AFG1A	IPC SPT (B)	3	Teflon
# 4 (NCAT)	Pine AFG1A	IPC SPT (B)	3	Greased Latex
# 5 (AAT)	Interlaken	Interlaken (T)	2	Teflon
# 6 (RAPL)	Interlaken	IPC SPT (B)	3	Teflon
# 7 (BCD)	Pine AFGC125X	Interlaken (T)	3	Greased Latex
# 1 (TTI) # 2 (Purdue) # 3 (Umass) # 4 (NCAT) # 5 (AAT) # 6 (RAPL) # 7 (BCD)	IPC Servopac Pine Pine AFG1A Pine AFG1A Interlaken Interlaken Pine AFGC125X	UTM-25 (T) UTM-25 (T) IPC SPT (B) IPC SPT (B) Interlaken (T) IPC SPT (B) Interlaken (T)	3 3 3 2 3 3 3	Greased Lat Greased Lat Teflon Greased Lat Teflon Teflon Greased Lat

Table 1 – Test Equipment and Accessories Used by Different Laboratories

- (T) = Top Loading Device; (B) = Bottom Loading Device

HMA Mixture Design and Material Preparation

Two Superpave HMA mixtures, described in Table 2, were designed at the Rutgers University Asphalt Pavement Laboratory (RAPL). Both mixtures contained New Jersey trap rock (diabase) aggregate materials, PG64-22 asphalt binder, and were designed at 100 design gyrations. Loose mix was produced and packaged for each test specimen. A quality control assessment was made for every fifth sample, including washed gradations and maximum specific gravity (G_{mm}), performed in accordance with AASHTO specifications.

Each participating laboratory received four (4) sealed, wax-lined boxes of loose mix for each mixture designation, with each box containing 7,400 \pm 5 grams of mix. Each box was assigned a sample ID number, and the samples were randomly assigned to the seven (7) different laboratories, thereby minimizing any bias that may have occurred during sample production. In addition to the samples, each participating laboratory received a letter including specific instructions on mixture conditioning, gyratory compaction, sample preparation, testing, and data recording. The laboratories were instructed to use three (3) of the samples for AASHTO TP62-07 testing, and the fourth sample for other necessary activities (i.e. – internal temperature probe, load level selection, etc.).

Analysis of Test Results

Bulk Specific Gravity of Test Specimens

Prior to conducting AASHTO TP62-07, the laboratories determined the bulk specific gravity, G_{mb} , in accordance with AASHTO T166 for each test specimen after coring and cutting. The variability of the samples is important to consider because the AASHTO

Table 2 – Mixture Design Properties Used for Dynamic Modulus Test Specimens

Mixture Design	Mixtur	е Туре
Property	25mm	9.5mm
Binder Content (%)	4.2%	5.5%
G _{mm} (g/cm ³)	2.758	2.703
G _{sb} (g/cm ³)	2.891	2.9
Percent	Passing	
25mm	100	100
19mm	88.5	100
12.5mm	74.5	100
9.5mm	58.5	98
4.75mm	40.1	58.6
2.36mm	30.5	38.6
1.18mm	24	29.6
0.6mm	18.7	23.1
0.3mm	12.1	16.2
0.15mm	7.6	10.3
0.075mm	4.9	6.6

TP62-07 procedure includes specimen preparation. Thus, any variability in specimen preparation is included in the variability of the dynamic modulus test method. According to AASHTO T 166, "duplicate specific gravity results by the same operator should not be considered suspect unless they differ by more than 0.02." Four specimens fell just outside that range; one 9.5mm and three 25mm samples. Final statistics for all test specimens were as follows:

- 9.5mm Mix: Average G_{mb} = 2.548 g/cm³; Standard Deviation = 0.017 g/cm³; Coefficient of Variation (COV) = 0.663%; Average Air Voids = 5.73%
- 25mm Mix: Average G_{mb} = 2.599 g/cm³; Standard Deviation = 0.014 g/cm³; Coefficient of Variation (COV) = 0.523%; Average Air Voids = 5.76%

Review of the AASHTO Material Reference Laboratory (AMRL) Proficiency Sample results for the 2007 Gyratory Samples shows that out of 498 laboratories, the average standard deviation of the bulk specific gravity, as determined by AASHTO T166, was 0.0271 g/cm³ with an average Coefficient of Variation of 1.04%. Therefore, even though four of the dynamic modulus test specimens fell out of compliance with AASHTO T166, the precision results were within expectations.

A review of each laboratories specimen dimensional data showed that the average standard deviation in specimen height was 0.26mm and the average standard deviation in specimen diameter was 0.077mm.

Dynamic Modulus Test Results

A cursory review of the dynamic modulus data was performed by evaluating the COV for various data groupings. When assessing the test results for each laboratory for all temperatures and loading frequencies, the coefficient of variation (COV) ranged from 7.7 percent to 43.5 percent, with an average COV of 25.7 percent. Lesser variation was attained at intermediate test temperatures and faster loading frequencies. When evaluating only the laboratories that used a Simple Performance Tester (SPT), the average COV decreased slightly to 23.1%.

The general precision of the within-laboratory results (each lab separately), as determined by the COV, were much better. The average COV for the test results for all labs was 11.2%, with the average COV of the laboratories using the SPT units being 10.9%. The within-laboratory COV reported is in agreement with data reported elsewhere (*5*, *15*).

The test results suggested that there were differences between the measured dynamic modulus values of identical mixtures when prepared and tested in accordance with AASHTO TP62-07 by the different laboratories. A more detailed look at the test data was conducted to try and locate the reasons for the discrepancies.

Black Space Diagram

In an attempt to identify testing variability and/or non-linearity in the material behavior due to non-compliance to the recommended micro-strain levels, the dynamic modulus and phase angle were averaged for each laboratory's data and plotted in Black Space (*16, 17*). Figure 2a, b, c, and d contain the Black Space plots for the different mixes and laboratories. The Black Space diagrams for Lab #1 and #2 indicate that either nonlinearity or measurement error was occurring at the intermediate to higher test temperatures for the 9.5mm mix. Intermediate and higher test temperatures are represented towards the middle and left side of the curves, respectively. This is compared to the Black Space plots of the three Simple Performance Test (SPT) devices (Labs #3, #4, and #6) where the curves attained excellent R² values and appeared close to one another, especially Labs #3 and #6. Similar discrepancies can be seen for the 25mm mixes in Figure 2c and 2d, where Figure 2c shows the Black Space diagram for the non-SPT machines, and Figure 2d shows the Black Space diagram for the SPT machines. It should be noted that Labs #5 and #7 in Figure 2c do show good uniformity in their respective Black Space diagrams, as noted with their R² values being greater than 0.94. Unfortunately, the curves are shifted away from one another indicating discrepancies in the measured dynamic modulus and phase angle values.

Since the Black Space diagrams had shown potential issues with non-linearity, a closer look at the magnitude of micro-strain levels was conducted. For the laboratories using the SPT test machines, the micro-strain levels averaged 80 to 110 μ -strains. Lab #2, which showed non-linearity in the Black Space Diagram, had micro-strain levels that averaged between 70 and 90 μ -strains. However, the range of strain level during each frequency sweep (all frequencies tested at a constant temperature) was wide. For example, Table 3 shows the average, minimum and maximum micro-strain levels for the frequency sweeps for four different laboratories for the 25mm mix; 1) SPT Machine (Lab #6), 2) Non-SPT with good micro-strain control (Lab #5); 3) Non-SPT with poor micro-strain levels (Lab #7).

Figure 2 – Black Space Diagrams: a) Non-linearity 9.5mm Mix; b) SPT's Only - 9.5mm; c) Non-SPT - 25mm; d) SPT's Only - 25mm

	Temperature	Ave	erage Micro-strain (Rar	nge)
Lab NO.	(F)	25mm Sample # 1	25mm Sample # 2	25mm Sample # 3
	14			
Lab # 2	40	57 (42 to 84)	73 (54 to 104)	64 (46 to 95)
(Non SPT)	70	89 (47 to 164)	67 (42 to 114)	87 (45 to 171)
	100	85 (32 to 161)	112 (40 to 217)	76 (29 to 148)
	130	63 (33 to 90)	99 (45 to 159)	88 (41 to 138)
	14	83 (74 to 99)	98 (93 to 106)	88 (75 to 108)
Lob # 5	40	104 (98 to 112)	104 (95 to 115)	101 (98 to 103)
(Non SPT)	70	102 (95 to 109)	106 (96 to 114)	102 (97 to 109)
	100	103 (97 to 107)	105 (97 to 112)	105 (95 to 110)
	130	108 (87 to 120)	106 (97 to 125)	105 (93 to 112)
	14			
Lab#6	40	85 (62 to 101)	88 (69 to 100)	87 (66 to 100)
	70	94 (91 to 96)	94 (90 to 96)	93 (86 to 96)
(3F1)	100	91 (82 to 100)	92 (83 to 103)	91 (83 to 100)
	130	92 (85 to 99)	92 (86 to 102)	91 (83 to 100)
	14	49 (49 to 50)	39 (39 to 49)	49 (49 to 50)
Lab # 7	40	47 (47 to 48)	49 (48 to 50)	48 (47 to 49)
	70	44 (43 to 46)	45 (43 to 49)	44 (43 to 46)
	100	47 (45 to 50)	45 (42 to 49)	46 (44 to 49)
	130	50 (49 to 50)	49 (48 to 51)	50 (49 to 50)

Table 3 – Average and Range of Micro-strain Level for Four Different Laboratories for the 25mm Mix

The results in Table 3 show that Lab #2, although having an average micro-strain level within specification (50 to 150), had a wide range of micro-strain within each frequency sweep; and in some cases, had micro-strain levels that fell out of compliance with AASHTO TP62-07. The wide range of frequencies within each frequency sweep and non-compliance to the recommended micro-strain levels may explain the non-linearity shown in the Black Space Diagram. Lab #5 and Lab #6 show good agreement with one another for average and range, with Lab #5 having a slightly higher micro-strain level. Both laboratories had good Black Space Diagrams with no evidence of non-linearity. The Black Space Diagrams were also shown to have good comparisons to one another. Lab #7 had excellent control of the micro-strain level over the frequency sweeps; however, the overall magnitude is slightly lower than recommended by AASHTO TP62-07. Black Space Diagram for Lab #7 showed a good fit with no non-linearity.

A comparison of the E* master curves of the laboratories (Figure 3) shows that once again good agreement between Lab #5 (Non-SPT) and Lab #6 (SPT) exists, as in the case of the micro-strain magnitude and range. Lab #2 and Lab #7 had E* master curves higher than Labs #5 and #6, especially at the intermediate and higher test temperatures (i.e. – loading frequencies less than 1 Hz). As shown in Table 6, this appears to be a result of lower micro-strain levels. Similar differences in computed dynamic modulus values due to differences in micros-strain level were found by Tran and Hall (*18*). As a corrective action, the authors had recommended reducing the upper limit (150 micro-strains) in the dynamic modulus test. The data presented in this section indicates that a tighter allowable range in micro-strain level may be required to promote better precision among different laboratories and limit potential for non-linearity effects.

Loading Frequency (Hz)

Figure 3 – Master Stiffness Curve for Labs #2, #5, #6, and #7 for the 25mm Mix

PRECISION STATEMENT ASSESSMENT

When considering the precision of a test method, significant sources of variability must be identified and expressed in terms of repeatability and reproducibility. The accepted practice for determining the precision of a test method is given in ASTM E 691, "Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method" (*19*). This practice recommends that an interlaboratory study include a minimum of 6 laboratories and 3 materials, and that each laboratory perform triplicate testing. In this study, only 2 materials were included. It is noted, however, that each dynamic modulus test provides two responses (E* and phase angle) for each combination of five testing temperatures and six frequencies, resulting in a total of 60 responses for each sample tested.

In the ASTM E 691 procedure, within-laboratory (k) and between-laboratory (h) consistency statistics are computed in order to determine whether there were laboratories that generated data that was not typical of the overall experiment. Inconsistencies are then noted and investigated, and if a valid reason exists, extreme data points may be removed from the dataset. Although several of the h and k statistics slightly exceeded the critical values, all exceptions were considered to be borderline. Thus, no results were removed from the dataset.

For the data generated in this portion of the study, the following observations were noted with respect to E^* :

- At 14 degrees F, Lab #7 produced positive h-statistics for E*, while the other 3 labs provided primarily negative statistics. The Lab #7 values were close to, but did not exceed, critical values. This trend was consistent for all testing frequencies.
- At 40 and 70 degrees F, Lab #2 appeared to provide E* values that were most distant from the other laboratories, exceeding the critical h-statistic for the 25.0mm mixture tested at mid-range frequencies.
- At 100 and 130 degrees F, Lab #4 was most variable for the mid-range testing frequencies, exceeding the critical h-statistic for both materials at the 100F / 1 Hz testing combination.
- At the 40F and 70F testing temperatures, Lab #2 generated the greatest withinlaboratory variability. In general, the variability was most pronounced for the 9.5mm mixture.
- At 100F, Lab #4 generally exhibited the greatest variability, having the greatest kstatistic values at lower testing frequencies.
- At 130F, Lab #2 and Lab #3 displayed the greatest overall levels of variability, such that variability for Lab #2 decreased as frequency increased, and the variability for Lab #3 increased as frequency increased.

With respect to phase angle, the following trends were observed:

- At 14 F, Lab #1 produced positive h-statistics, while those for the other labs were primarily negative. Results were most variable for the 25Hz / 25.0mm mixture testing combination.
- At 40F, the Lab #2 and Lab #1 results appeared to exhibit the greatest deviation from the group (i.e., greatest h-statistics), especially at the low and intermediate testing frequencies.
- At 70F, the Lab #1 h-statistics were higher than those for the other labs for all testing frequencies except 25 Hz. Most statistics for this laboratory were near the critical value.
- At 100F, the Lab #7 results displayed the greatest deviation from the group, especially at the low and intermediate frequencies.
- At 130F, all laboratories displayed somewhat greater levels of variability, but were generally similar for all testing frequencies.
- At 14F, Lab #1 exhibited the greatest within-laboratory variability, which was more pronounced for the 9.5mm mixture.
- At 40F, Lab #1 exceeded the critical within-laboratory variability, primarily at the higher testing frequencies. Lab #3 displayed excessive variability for the 25.0mm mix at the 0.5Hz testing frequency.
- At 70F, Lab #2 had the greatest within-laboratory variability, having k statistic values near or above critical for the intermediate and high frequencies.
 Excessive variability was also detected for this laboratory at the 100F / 1Hz / 9.5mm testing combination.
- At 130F, the within-laboratory variability for Lab #3 and Lab #5 generally decreased as testing frequency increased, while that for Lab #2 appeared to increase as frequency increased.

From the within-laboratory and between-laboratory statistics, precision statistics for repeatability and reproducibility relative to E* and phase angle were calculated for each material, temperature, and frequency combination. In general, the greatest amounts of variability were detected for the 14F and 130F testing temperatures. Variability appeared to be less affected by testing frequency, although variability in phase angle was slightly greater at lower frequencies.

Analysis of Variance

In order to further investigate the components of variance present in the dataset, the E^{*} data was evaluated using an analysis of variance with two random effects. In essence, the total variability of the E^{*} test was calculated according to

 $\sigma_y^2 = \sigma_t^2 + \sigma_\beta^2 + \sigma_{t\beta}^2 + \sigma^2$

where σ_y^2 is the total variability, σ_r^2 is the variance component for materials, σ_{β}^2 is the variance component for laboratories, $\sigma_{r\beta}^2$ represents the interaction between materials and laboratories, and σ^2 is the random experimental error. The repeatability of the method is described by σ^2 , and the reproducibility of the method is represented by the sum of σ_{β}^2 and $\sigma_{r\beta}^2$ because it includes the additional variability in the test method generated by various laboratories. For the dynamic modulus test, the variability between laboratories includes both the variation in the processes used in sample preparation and the devices used to measure dynamic modulus.

For each combination of temperature and frequency, the variance components associated with E* were estimated. In cases where the interaction between parts and operators was not statistically significant, this term was omitted from the model, and only the variance due to materials and laboratories were estimated.

In general, the experimental variance (i.e., repeatability) was relatively low, and the largest proportion of error was attributed to the laboratory error, or reproducibility term. This is reasonable because the reproducibility variance contains the largest number of sources of variability. Material variability was also larger than the pure experimental error, which means that the intentional variability in the data created through the use of different materials was readily detected by the dynamic modulus test.

Overall, it was apparent that the measurement of E* was more variable at low temperatures. This trend was noted for the experimental, repeatability, and reproducibility error terms. However, the magnitude of the E* measurements was also greater at low temperatures. Thus, the variability associated with each testing temperature was relatively proportional to the measured value of E*. Similar trends were noted for phase angle, such that the larger values for variance existed for the larger measures of phase angle. The greatest variability associated with phase angle was attributed to the laboratory variance at lower frequencies, and was much more pronounced for the 130F testing temperature. Interestingly, within each temperature category, E* variability increased as testing frequency increased, but phase angle variability decreased as testing frequency increased.

In order to provide a fairer comparison of repeatability and reproducibility across the range of temperatures, variance components were next considered as a percentage

Figure 4 – Percent Variance Components for E* and Phase Angle

Figure 5 – Percent of Laboratory Variability for SPT and non-SPT Devices

of total variance, σ_v^2 . These comparisons are given in Figure 4. Although less pronounced, the percent variability comparisons confirm that the laboratory component of variance for E* is most variable at the lowest testing temperature, while the precision of phase angle is detrimentally affected by both the lowest and highest test temperatures. Thus, the greatest between-laboratory precision of the dynamic modulus test is attained at the intermediate temperatures (40F, 70F, and 100F). Because slight differences were known to exist between various types of dynamic modulus testing equipment, an analysis of variance (ANOVA) was used to investigate the effect of the various equipment types. The results of the analysis indicated that the SPT and non-SPT devices provided statistically significant differences in measures of both E* and phase angle. In order to assess the impact of this difference on the precision of the dynamic modulus test, a similar comparison of variance components was completed separately for the SPT and non-SPT devices, as shown in Figure 5. Again, the greatest precision was achieved at intermediate test temperatures, with the SPT devices exhibiting much less variability between laboratories than the non-SPT devices. Thus, if the 14F and 130F testing temperatures were removed, the precision of the dynamic modulus test could be significantly improved. It has previously been suggested that the number of temperature and testing frequencies be reduced for routine dynamic modulus testing (11, 20). In addition, not all E* testing equipment is capable of testing at the 14F temperature. Thus, eliminating the 14F testing temperature would improve the variability of the E* testing measurements, and eliminating the 130F test temperature would be beneficial for improving the reproducibility of phase angle measurements.

Development of Precision Statements for AASHTO TP62-07

A Precision Statement was generated for AASHTO TP62-07 (2) in accordance with ASTM E691 (19). The Precision Statement utilized the recorded dynamic modulus (E*) and phase angle data for each laboratory and each material, at each test temperature and loading frequency. The results of the Precision Statement are shown in Table 4. Because the variance components were not constant for varying levels of temperature and frequency, precision statistics are presented as percentages. The Precision Statement for AASHTO TP62-07, for all test devices, shows better repeatability for phase angle measurements than for the calculated dynamic modulus, especially for the Single Operator Precision. A relatively high variability is shown for Multi-Laboratory Precision when evaluating the acceptable range of 2 results, called D2S%.

The generated Precision Statement for AASHTO TP62-07 reinforces the variability in test results previously described in Figures 4. In an attempt to evaluate the potential increase in precision, a Precision Statement was again generated for all test devices, but with the elimination of the low and high test temperatures, which were previously identified as having the highest level of variability in the test data. By eliminating the low and high test temperatures, a slight increase in the overall precision was determined. However, the level of the D2S% still indicates a relatively high level of variability exists.

Since the elimination of low and high temperatures only slightly increased the precision of AASHTO TP62-07, further Precision Statements were generated by separating the different test equipment into two groups; 1) SPT devices only and 2)

Non-SPT Devices only and eliminating the low and high test temperatures. The previous results shown as Figures 4 and 5 indicated that the highest level of variability was associated with the low and high test temperatures, and that Non-SPT devices incurred greater variability than the SPT devices. As shown previously in Figure 5, the Percent of Laboratory Variability was lower for all comparable test temperatures and loading frequencies for the SPT devices when compared to the Non-SPT devices when the low and high test temperatures are eliminated. Similar to the results in Figure 5, the SPT devices resulted in a better precision statement than the Non-SPT devices.

Analysis Condition	Precision Mode	Parameter	1 S %	D2S%
	Single Operator	Dynamic Modulus	13.03	36.47
All Test Devices, All	Precision	Phase Angle	6.76	18.93
Temperatures	Multi-Laboratory	Dynamic Modulus	26.89	75.3
	Precision	Phase Angle	19.46	54.49
All Test Devices	Single Operator	Dynamic Modulus	12.24	34.26
All Test Devices,	Precision	Phase Angle	5.06	14.17
	Multi-Laboratory	Dynamic Modulus	24.98	69.94
Low reinperatures	Precision	Phase Angle	10.09	28.25
SPT Dovicos Only	Single Operator	Dynamic Modulus	10.87	30.44
Eliminating High and	Precision	Phase Angle	3.92	10.99
	Multi-Laboratory	Dynamic Modulus	22.05	61.74
Low reinperatures	Precision	Phase Angle	5.07	14.19
Non-SPT Devices Only	Single Operator	Dynamic Modulus	12.33	34.53
Eliminating High and	Precision	Phase Angle	5.6	15.69
	Multi-Laboratory	Dynamic Modulus	25.43	71.2
	Precision	Phase Angle	11.28	31.58

Table 4 – Precision Statement Generated for AASHTO TP62-07 and Potential Modifications

- 1S% = Coefficient of Variation

- D2S% = Acceptable Range of 2 Results

- Low Temperature = 14°F

- High Temperature = 130°F

Influence on MEPDG Distress Predictions

To evaluate how the precision of AASHTO TP62-07 influences the distress predictions of the MEPDG, a theoretical pavement section was designed. The pavement section, and its respective constituent materials, is shown below:

- Surface Course HMA: 9.5mm mix = 3 inches thick
- Base Course HMA: 19mm mix = 5 inches thick
- Aggregate Base Course: AASHTO A-1 = 8 inches thick
- Subgrade Soil: AASHTO A-4
- Climate Conditions: Newark, NJ

The Average Annual Daily Truck Traffic (AADTT) used in the analysis was 10,000. The remaining traffic inputs were left as the MEPDG Default values. Indirect Tensile and Creep Compliance testing, AASHTO T322 (*21*), were conducted at -10° C (14°F) to provide Level 2 HMA input parameters for the Thermal Cracking model. Each laboratory's dynamic modulus test results were used as Level 1 inputs, along with Conventional Level 1 asphalt binder properties. Air voids and VMA were computed for each individual lab based on the reported bulk specific gravity (G_{mb}), as well as the effective binder content, average maximum specific gravity (G_{mm}) and average bulk specific gravity of the aggregate blend (G_{sb}) determined during the Quality Control testing.

The MEPDG requires that the dynamic modulus measured at -10°C (14°F) and 54.4°C (130°F) test temperatures be used as input values to construct the master stiffness curve. However, as discussed earlier, the some laboratories were not capable of measuring the dynamic modulus at test temperatures lower than 0°C. Therefore, for those laboratories, the Limiting Maximum Modulus methodology proposed by Bonaquist and Christensen (*20*) was used to generate dynamic modulus parameters at the -10°C (14°F) test temperature for the master curve construction. Analyses conducted by Bonaquist and Christensen (*20*) had shown that this approach had a minimal effect on the generated master stiffness curves, and therefore should minimally affect the predicted pavement distresses.

Three MEPDG predicted pavement distresses were selected for comparison; HMA Rutting (inches), Longitudinal Cracking (ft/mile), and % Alligator Cracking in Wheelpath. The test results are shown in Table 5. Overall, the MEPDG analysis showed;

- A minimal change (from maximum to minimum) was found in the HMA Rutting due to the precision of the dynamic modulus test results (0.33 inches to 0.44 inches);
- An significant change (from maximum to minimum) was found in the Longitudinal Cracking results due to the precision of the dynamic modulus test results (24.3 to 215 ft/mile); and
- A minimal change (from maximum to minimum) was found in the % Alligator Cracking due to the precision of the dynamic modulus test results (3.7 to 5.2% of Wheelpath).

As discussed earlier, the precision analysis showed that the variability in the dynamic modulus test results were highest at the low and high test temperatures, as well as the 25 Hz test frequency. Therefore, repeated MEPDG runs were conducted by modifying these parameters in an attempt to increase the precision of the MEPDG distress predictions.

Lab #	E* Testing Scheme	Rutting	Long. Cr.	Allig. Cr. (% of
		(inches)		wneelpain)
	Actual Test Data	0.44	195	5.2
Lab # 1	Low Temp Hirsch	0.43	161	5.5
	Low and High Temp Hirsch	0.42	157	5.5
	Actual Test Data	0.33	24.3	3.7
Lab # 2	Low Temp Hirsch	0.33	24.3	3.7
	Low and High Temp Hirsch	0.34	37.7	3.9
	Actual Test Data	0.42	124	5.1
Lab # 3	Low Temp Hirsch	0.42	124	5.1
	Low and High Temp Hirsch	0.42	136	5.3
	Actual Test Data	0.37	58.7	4.6
Lab # 4	Low Temp Hirsch	0.37	58.7	4.6
	Low and High Temp Hirsch	0.38	92.3	4.9
	Actual Test Data	0.43	215	5.2
Lab # 5	Low Temp Hirsch	0.43	177	5.6
	Low and High Temp Hirsch	0.42	157	5.6
	Actual Test Data	0.43	155	4.5
Lab # 6	Low Temp Hirsch	0.42	122	5
	Low and High Temp Hirsch	0.41	115	5.1
	Actual Test Data	0.39	94.6	3.9
Lab # 7	Low Temp Hirsch	0.37	61.7	4.4
	Low and High Temp Hirsch	0.39	97.6	4.7

Table 5 – MEPDG Predicted Pavement Distresses for Different Dynamic Modulus Testing/Analysis Schemes

Reduction in Test Temperature Data

As shown in the precision analysis, the dynamic modulus data had the largest variability at the low and high test temperatures. Work conducted under the NCHRP 9-29 Project, *Simple Performance Test*, has recommended that the low test temperature $(14^{\circ}F)$ can be eliminated from the testing scheme and substituted with predicted modulus values of the Hirsch model for the master stiffness curve construction. NCHRP 9-29 is also recommending eliminating the $130^{\circ}F$ test temperature for high test temperatures based on the high temperature PG Grade (i.e. – PG64-22 would use $95^{\circ}F$ and PG76-22 would use $113^{\circ}F$).

Two additional runs in the MEPDG were conducted with 1) actual test values at 10°C (14°F) replaced by Hirsch Model estimates, as proposed by Bonaquist and Christensen (2006); and 2) actual test values at both the -10°C (14°F) and 54.4°C (130°F) test temperatures replaced by Hirsch Model estimates to generate the dynamic modulus values. The purpose of eliminating these test temperatures and using the Hirsch predictions was to evaluate how a reduced dynamic modulus testing procedure would affect the MEPDG predicted pavement distresses. The results of the additional MEPDG runs are shown in Table 6. It should be noted that Labs # 2, # 3, and # 4 were not able test at the 14°F test temperature and therefore, the Actual Test Data and Low Temp Hirsch results are identical.

For Labs # 1, # 5, # 6, and # 7, using the Hirsch predictions for 14° F in place of the actual test data;

 Resulted in minimal changes in HMA Rutting, reduced the longitudinal cracking by approximately 35 ft/mile, and increased % Alligator Cracking by approximately 0.4%

When both the 14°F (10°C) and 130°F (54.4°C) test temperature data were replaced by the Hirsch Model values, the following observations were made:

- Minimal changes were noted for HMA Rutting;
- Longitudinal Cracking predictions varied by laboratory:
 - For Labs # 2, # 3, # 4, and # 7, an average increase of 15.5 ft/mile was observed. The actual change ranged between 3 ft/mile and 33.6 ft/mile;
 - For Labs # 1, # 5, and # 6, an average decrease of 45.3 ft/mile was observed. The actual change ranged between 38 and 58 ft/mile.
- % Alligator Cracking increased slightly.

Therefore, based on the results of the precision statement development, it is recommended that the NJDOT utilize the reduced dynamic modulus test procedure, currently being recommended by Bonaquist and Christensen (*20*). The test procedure not only provides more precise results when comparing the multiple laboratory test results, but also provides an overall quicker test procedure.

PHASE 2 – DYNAMIC MODULUS CATALOG DEVELOPMENT

The parameter inputs of the Mechanistic Empirical Pavement Design Guide (MEPDG) were developed based on a hierarchical approach (1). This hierarchical approach allows users to enter in project/material specific information based on actual measured parameters (called Level 1) or parameters based on Default and model predictions (Level 2 and 3). For the most representative pavement distress predictions, it is recommended that state agencies and pavement designers try to utilize the Level 1 inputs. However, due to time constraints, lack of laboratory equipment and personnel, as well as requiring a pavement design recommendation almost a year prior to the bidding of the project, many state agencies are relegated to using the Level 2 and/or Level 3 material inputs. This section of the report summarizes the laboratory effort conducted to develop a Dynamic Modulus (E*) catalog to use in the MEPDG for the New Jersey Department of Transportation (NJDOT). Twenty one (21) dense-graded mixtures, ranging from 25M64 to 9.5H76, were sampled during plant production and brought to the Rutgers Asphalt Pavement Laboratory (RAPL) where the loose mix was carefully reheated in accordance to AASHTO R30, Mixture Conditioning of Hot Mix Asphalt (HMA) (2), and compacted in the gyratory compactor in accordance to the recommendations of AASHTO TP62-07, Standard Method of Test for Determining Dynamic Modulus of Hot-Mix Asphalt (HMA) (3). Dynamic Modulus testing was conducted in accordance to the modified procedure recommended from the Phase 1 testing shown earlier in this report. This modified procedure follows that currently recommended by NCHRP Report 614, Refining the Simple Performance Tester for Use in Routine Practice (4). Table 1 shows the recommended testing temperatures and loading frequencies recommended in NCHRP Report 614. As shown earlier in Phase 1 of this report, the temperatures and loading frequencies shown in Table 1 allow for better overall multiple lab precision on the test method, while still providing modulus values for the development of the master stiffness curves.

PG 58-X	X and softer	PG 64-XX	& PG 70-XX	PG 76 –)	X and stiffer
Temp °C	Loading	Temp °C	Loading	Temp	Loading
-	Frequencies		Frequencies	°C	Frequencies
	Hz		Hz		Hz
4	10, 1, 0.1	4	10, 1, 0.1	4	10, 1, 0.1
20	10, 1, 0.1	20	10, 1, 0.1	20	10, 1, 0.1
35	10, 1, 0.1,	40	10, 1, 0.1,	45	10, 1, 0.1,
	and 0.01		and 0.01		and 0.01

Table 6 - NCHRP Report 614 Recommended Testing Temperatures and Loading Frequencies

Since the MEPDG will not construct a master stiffness curve without dynamic modulus test temperatures less than 32°F (0°C) or greater than 120°F (48.9°C), the master curves must be generated using the data collected based on Table 1 and then used to provide the lower and higher test temperature information. The procedure for this is discussed below.

Data Analysis

The general form of the dynamic modulus master curve is a modified version of the dynamic modulus master curve equation included in the Mechanistic Empirical Design Guide (MEDG) (1)

$$\log|E^*| = \delta + \frac{(Max - \delta)}{1 + e^{\beta + \gamma \log \omega_r}}$$
(1)

where:

 $|E^*|$ = dynamic modulus, psi ω_r = reduced frequency, Hz *Max* = limiting maximum modulus, psi δ , β , and γ = fitting parameters

The reduce frequency in Equation 1 is computed using the Arrhenius equation (5).

$$\log \omega_r = \log \omega + \frac{\Delta E_a}{19.14714} \left(\frac{1}{T} - \frac{1}{T_r} \right)$$
(2)

where:

 ω_r = reduced frequency at the reference temperature ω = loading frequency at the test temperature T_r = reference temperature, °K T = test temperature, °K ΔE_a = activation energy (treated as a fitting parameter)

The final form of the dynamic modulus master curve equation is obtained by substituting Equation 2 into Equation 1.

$$\log|E^*| = \delta + \frac{(Max - \delta)}{1 + e^{\beta + \gamma \left\{\log \omega + \frac{\Delta E_a}{19.14714} \left[\left(\frac{1}{T}\right) - \left(\frac{1}{T_r}\right) \right] \right\}}}$$
(3)

The shift factors at each temperature are given by Equation 4,

$$\log[a(T)] = \frac{\Delta E_a}{19.14714} \left(\frac{1}{T} - \frac{1}{T_r}\right)$$
(4)

where:

a(T) = shift factor at temperature T

 T_r = reference temperature, °K

T = test temperature, °K

 ΔE_a = activation energy (treated as a fitting parameter)

The maximum limiting modulus is estimated from mixture volumetric properties using the Hirsch model (6) and a limiting binder modulus of 1 GPa (145,000 psi), Equations 5 and 6.

$$|E^*|_{\max} = P_c \left[4,200,000 \left(1 - \frac{VMA}{100} \right) + 435,000 \left(\frac{VFA \ x \ VMA}{10,000} \right) \right] + \frac{1 - P_c}{\left[\frac{\left(1 - \frac{VMA}{100} \right)}{4,200,000} + \frac{VMA}{435,000(VFA)} \right]}$$
(5)

where:

$$P_{c} = \frac{\left(20 + \frac{435,000(VFA)}{VMA}\right)^{0.58}}{650 + \left(\frac{435,000(VFA)}{VMA}\right)^{0.58}}$$
(6)

|E^{*}|_{max} = limiting maximum mixture dynamic modulus, psi VMA = Voids in mineral aggregates, % VFA = Voids filled with asphalt, %

Fitting the Dynamic Modulus Master Curve

The following steps are recommended in NCHRP Report 614 to generate the master curves from the reduced testing matrix shown in Table 1.

Step 1. Estimate Limiting Maximum Modulus

Using the average VMA and VFA of the specimens tested, compute the limiting maximum modulus using Equations 5 and 6.

Compute the logarithm of the limiting maximum modulus and designate this as Max

Step 2. Select a the Reference Temperature

Select the reference temperature for the dynamic modulus master curve and designate this as T_r . Usually 20 °C (293.15 °K) is used as the reference temperature.

Step 3. Perform Numerical Optimization

Substitute *Max* and T_r selected into Equation 3.

Determine the four fitting parameters of Equation 3 (δ , β , γ , and ΔE_a) using numerical optimization. The optimization can be performed using the Solver function in Microsoft

EXCEL®. This is done by setting up a spreadsheet to compute the sum of the squared errors between the logarithm of the average measured dynamic moduli at each temperature/frequency combination and the values predicted by Equation 3. The Solver function is used to minimize the sum of the squared errors by varying the fitting parameters in Equation 3. The following initial estimates are recommended: $\delta = 0.5$, $\beta = -1.0$, $\gamma = -0.5$, and $\Delta E_a = 200,000$.

An example of this methodology is shown in Figure 6 for a 12H76 asphalt mixture from Trap Rock Industries. As the figure indicates, the reduced testing, shown in Orange, provides adequate information for input into the MEPDG. Then, using the master curve parameters shown in Equation (1), one can shift the curves to determine the respective Dynamic Modulus values at the MEPDG required higher and lower test temperatures. An example of this type of calculation is shown as Table 7.

Loading Frequency (Hz)

Figure 6 – Generated Master Stiffness Curve for Trap Rock Industries 12H76 Mix

Trap Roc	k Industries - Kings	ton, NJ
Temperature (F)	Frequency (Hz)	E* (psi)
	25.0	2,919,092
	10.0	2,860,857
10.0	5.0	2,808,585
10.0	1.0	2,654,511
	0.5	2,571,897
	0.1	2,336,653
	25.0	2,707,128
	10.0	2,605,451
40.0	5.0	2,516,232
40.0	1.0	2,264,307
	0.5	2,135,868
	0.1	1,794,619
	25.0	1,818,637
	10.0	1,604,441
70.0	5.0	1,436,039
70.0	1.0	1,044,317
	0.5	884,597
	0.1	560,614
	25.0	800,462
	10.0	616,551
100.0	5.0	495,547
100.0	1.0	280,251
	0.5	214,515
	0.1	112,178
	25.0	256,541
	10.0	179,060
130.0	5.0	135,344
100.0	1.0	70,462
	0.5	53,637
	0.1	29,758

Table 7 – Example of Resultant Dynamic Modulus Values from Reduced Testing Procedure

RESULTS OF DYNAMIC MODULUS CATALOG

When utilizing the Level 1 hierarchy in the MEPDG, two sets of information is required to be inputted for flexible pavements; 1) Asphalt binder properties and 2) Dynamic Modulus properties of the mixtures. The low temperature Indirect Tensile Strength and Creep Compliance inputs are only required for the surface course mixture. The low temperature inputs were not required for this research effort. However, four (4) typical surface course mixes were tested under the Level 1 low temperature hierarchy procedure to provide NJDOT with low temperature MEPDG mixture property inputs and are provided in this document for potential use.

Asphalt Binder Inputs

Two different types of asphalt binder input values can be selected for use as Level 1 hierarchy inputs; 1) Superpave binder test data or 2) Conventional test data. Superpave binder test data refers to shear modulus (G*) and phase angle (δ) collected during the PG binder grading. However, the temperature range required for the MEPDG inputs is a low at 40°F up to almost where the PG grading occurs. Figure 7 shows a screen shot Level 1 inputs required for the asphalt binder properties.

Level: 1	Asphalt r	material type: ckness (in):	Asphalt concre	əte -	
Asphalt	Mix Asphalt Binde	er 📔 Asphalt (At Short Term Ag Superpave binde Conventional bin	ieneral ing - RTFO r test data der test data		
	Ni	umbar of			
	Nu ter	umber of amperatures:			
	Nu ter	umber of mperatures:	requency = 10	rad/sec	-
	Nu ter Temperature (°F)	Imber of Imperatures: Angular 1	requency = 10 Delta () rad/sec	1
	Nu ter Temperature (°F) 40	Angular 1 G* (Pa) 1.79E7	requency = 10 Delta () rad/sec	1
	Temperature (°F) 40 55	Angular 1 G* (Pa) 1.79E7 4.98e6	requency = 10 Delta (*	7 rad/sec 7) 37.4 46.9	
	Nu ter Temperature (°F) 40 55 77	Imber of mperatures: G* (Pa) 1.79E7 4.98e6 8.14e5	requency = 10 Delta (*	9 rad/sec) 37.4 46.9 56.5	

Figure 7 – Superpave Binder Test Data for Level 1 Asphalt Binder Inputs in the MEPDG

A similar input page is provided for the conventional binder test data that includes;

- o Absolute and kinematic viscosities;
- o Softening point;
- o Penetration at different temperatures;

Although not included in the original scope of work, both sets of binder tests (Conventional and Superpave) were conducted for typical PG64-22 and PG76-22 asphalt binders. Test results for the Level 1 Conventional and Superpave Binder Tests are shown in Tables 7 and 8.

Test	Temp., F	NuStar PG64-22	Valero PG64-22
Popotration	40	4	3
(100 g S) $1/10$	55	11	10
(1009, 33), 1/10 mm	77	41	34
11111	90	88	74
Softening Point, F	NA	130.6	129.4
Absolute Viscosity, P	140	7160	5930
Kinematic Viscosity, cSt	275	714	675
Specific Gravity	77	1.033	1.042
	150	314,000	265,000
Viceosity oD	200	13,240	11,800
VISCOSILY, CP	250	1,445	1,390
	300	314	302
Test	Temp., F	SemMaterials PG76-22	NuStar PG76-22
Test	Temp., F 40	SemMaterials PG76-22 3	NuStar PG76-22 3
Test Penetration	Temp., F 40 55	SemMaterials PG76-22 3 9	NuStar PG76-22 3 8
Test Penetration (100g, 5 s), 1/10	Temp., F 40 55 77	SemMaterials PG76-22 3 9 32	NuStar PG76-22 3 8 28
Test Penetration (100g, 5 s), 1/10 mm	Temp., F 40 55 77 90	SemMaterials PG76-22 3 9 32 54	NuStar PG76-22 3 8 28 52
Test Penetration (100g, 5 s), 1/10 mm Softening Point, F	Temp., F 40 55 77 90 NA	SemMaterials PG76-22 3 9 32 54 151.3	NuStar PG76-22 3 8 28 52 150.6
Test Penetration (100g, 5 s), 1/10 mm Softening Point, F Absolute Viscosity, P	Temp., F 40 55 77 90 NA 140	SemMaterials PG76-22 3 9 32 54 151.3 61,290	NuStar PG76-22 3 8 28 52 150.6 52,540
TestPenetration(100g, 5 s), 1/10mmSoftening Point, FAbsolute Viscosity,PKinematicViscosity, cSt	Temp., F 40 55 77 90 NA 140 275	SemMaterials PG76-22 3 9 32 54 151.3 61,290 3180	NuStar PG76-22 3 8 28 52 150.6 52,540 2308
TestPenetration(100g, 5 s), 1/10mmSoftening Point, FAbsolute Viscosity,PKinematicViscosity, cStSpecific Gravity	Temp., F 40 55 77 90 NA 140 275 77	SemMaterials PG76-22 3 9 32 54 151.3 61,290 3180 1.038	NuStar PG76-22 3 8 28 52 150.6 52,540 2308 1.037
TestPenetration(100g, 5 s), 1/10mmSoftening Point, FAbsolute Viscosity,PKinematicViscosity, cStSpecific Gravity	Temp., F 40 55 77 90 NA 140 275 77 150	SemMaterials PG76-22 3 9 32 54 151.3 61,290 3180 1.038 2,380,000	NuStar PG76-22 3 8 28 52 150.6 52,540 2308 1.037 2,480,000
Test Penetration (100g, 5 s), 1/10 mm Softening Point, F Absolute Viscosity, P Kinematic Viscosity, cSt Specific Gravity	Temp., F 40 55 77 90 NA 140 275 77 150 200	SemMaterials PG76-22 3 9 32 54 151.3 61,290 3180 1.038 2,380,000 85,600	Star PG76-22 3 8 28 52 150.6 52,540 2308 1.037 2,480,000 64,500
TestPenetration(100g, 5 s), 1/10mmSoftening Point, FAbsolute Viscosity, PKinematicViscosity, cStSpecific GravityViscosity, cP	Temp., F 40 55 77 90 NA 140 275 77 150 200 250	SemMaterials PG76-22 3 9 32 54 151.3 61,290 3180 1.038 2,380,000 85,600 7000	Star PG76-22 3 8 28 52 150.6 52,540 2308 1.037 2,480,000 64,500 5360

Table 7 – Conventional Binder Test Results for Level 1 Inputs

NuStar PG64-22					
Tomporaturo E	Angular Frequency = 10 rad/sec				
remperature, r	G* (Pa)	Delta (degrees)			
50	17,600,000	47.3			
71.6	2,506,000	59.9			
93.2	300,700	69.9			
114.8	4,096	80.8			
136.4	581	86.3			
ļ	SemMaterials PG76-22	2			
Tomporaturo E	Angular Freque	ncy = 10 rad/sec			
remperature, r	G* (Pa)	Delta (degrees)			
50	21,070,000	40.0			
71.6	3,570,000	51.2			
93.2	504,600	60.3			
114.8	83,590	63.4			
136.4	18,560	64.0			
158	5,504	65.6			
179.6	1,775	69.0			

Table 8 – Superpave Binder Tests for Level 1 Inputs

Dynamic Modulus Test Results

As discussed earlier, a reduced testing procedure was conducted using the Simple Performance Tester to help increase the precision of the dynamic modulus testing protocol. In doing so, both the low and high temperatures, as specified in AASHTO TP62-07, are eliminated from testing. However, the MEPDG requires test data from both of these temperatures to construct the master stiffness curves in order to predict resultant pavement stress and strain during traffic and environmental loading. In order to provide these inputs, the high and low test temperature data is extrapolated from the resultant master curve of the reduced testing procedure, as discussed and shown earlier, and generated into a format used by the MEPDG, as shown in Figure 8. This process was conducted on thirteen (19) different dense-graded mixes and two (2) stone mastic asphalt mixtures. The test results are shown in the tables located in the Appendix.

el 1 💌 🕹	asphalt materi ayer thicknes	ial type: 🛛 🗛 ss (in):	sphalt concrete	8
Asphalt Mix 🔲 Asph Dynamic Modulus Tabl Number of 🏾 🏾	alt Binder E	Asphalt Gen	eral	-
temperatures:		frequ	encies:	<u> </u>
temperatures:		frequ Mixtu	encies: I Ire E* (psi)	
temperatures:	0.1	frequ Mixtu	encies: Ire E* (psi) 10	25
temperatures: Temperature (%) 10	0.1	frequ Mixtu 1 2214499	encies: re E* (psi) 10 2509367	25 2598853
temperatures: Temperature (°F) 10 40	0.1 1807698 789187	frequi Mixtu 1 2214499 1227495	encies: Te E* (psi) 10 2509367 1654832	25 2598853 1734659
temperatures: Temperature (°F) 10 40 70	0.1 1807698 789187 226939	frequi Mixtu 2214499 1227495 440246	encies: Te E* (psi) 10 2509367 1654832 781182	25 2598853 1734659 957396
temperatures: Temperature (°F) 10 40 70 100	0.1 1807698 789187 226939 49488	frequi Mixtu 2214499 1227495 440246 107164	encies: 10 10 2509367 1654832 781182 232124	25 2598853 1734659 957396 324039
temperatures: Temperature (°F) 10 40 70 100 130	0.1 1807698 789187 226939 49488 16160	frequi Mixtu 2214499 1227495 440246 107164 32519	encies: 1 TE E* (psi) 10 2509367 1654832 781182 232124 68538	25 2598853 1734659 957396 324039 105721

Figure 8 – Level 1 Dynamic Modulus Input in the MEPDG

Low Temperature Test Results

In the MEPDG, the low temperature characterization is only required for the surface course mixture, and not the intermediate or base course materials. Although not in the original scope of work, low temperature cracking properties (low temperature Indirect Tensile Strength and Low Temperature Creep Compliance testing) was conducted on select HMA mixes commonly found as the surface course in New Jersey. The MEPDG low temperature input page is shown as Figure 9.

ermal Cracking C Level 1 C Level 2 C Level 3	Average Creep tes	tensile strength at 1 t duration (sec):	4 °F (psi):	? 444 00 💌
Binder type:	Loading	Сгее	p Compliance (*	l/psi)
	Time	Low Temp (°F)	Mid Temp (°F)	High Temp ("F)
	sec	-4	14	32
	1	2.827e-007	4.137e-007	5.309e-007
	2	2.965e-007	4.206e-007	6.205e-007
	5	3.309e-007	5.24e-007	7.791e-007
	10	3.378e-007	5.86e-007	8.756e-007
- mport	20	3.654e-007	6.481e-007	1.048e-006
Export	50	3.792e-007	7.998e-007	1.358e-006
	100	3.999e-007	9.101e-007	1.696e-006
Compute mix co	efficient of th	ermal contraction.		
Mixture VM/	4 (%):			
Aggregate (coefficient of	thermal contraction	r:	
Mix coeffici	ient of therm	al contraction (mm/	mm/°C): 1.3e-00	15

Figure 9 – Low Temperature Input Parameters from MEPDG

Only four surface course mixtures were used in the low temperature testing and tested in accordance with AASHTO T322, Standard Method of Test for Determining the Creep Compliance and Strength of Hot-Mix Asphalt (HMA) Using the Indirect Tensile Test Device (7). However, since the low temperature performance is typically controlled by the asphalt binder grade and general volumetrics of the mixture, the surface course mixtures shown in the upcoming tables should provide a good estimate of a majority of NJDOT mixture designation's low temperature characterization.

Earle Asphalt, 9.5H76			Trap Rock (Pennington), 9.5H76				
Loading Time	Creep	Compliance (1/psi)		Creep Compliance (1/psi)		
(sec)	-4°F	14°F	32°F	Loading Time (sec)	-4°F	14°F	32°F
1.5	1.90731E-07	2.60427E-07	5.70929E-07	1.5	2.71948E-07	3.90996E-07	4.05886E-07
2.4	1.96947E-07	2.76316E-07	6.22193E-07	2.4	2.81162E-07	4.15299E-07	4.46679E-07
3.9	2.06313E-07	2.91945E-07	6.77031E-07	3.9	2.90850E-07	4.40603E-07	4.91491E-07
6.2	2.11507E-07	3.07157E-07	7.33347E-07	6.2	2.97958E-07	4.63334E-07	5.39639E-07
9.9	2.20363E-07	3.23411E-07	7.98044E-07	9.9	3.07594E-07	4.88638E-07	5.96052E-07
15.9	2.28111E-07	3.40238E-07	8.65697E-07	15.9	3.18124E-07	5.14799E-07	6.58076E-07
24.9	2.37478E-07	3.59670E-07	9.51589E-07	24.9	3.29708E-07	5.44535E-07	7.35416E-07
39.9	2.49994E-07	3.81602E-07	1.05301E-06	39.9	3.44556E-07	5.79274E-07	8.33078E-07
62.9	2.67194E-07	4.05410E-07	1.17723E-06	62.9	3.62510E-07	6.16873E-07	9.49619E-07
99.9	2.87885E-07	4.31822E-07	1.32621E-06	99.9	3.83729E-07	6.58760E-07	1.10104E-06
Average Tensile Strength (psi)	632	660	477	Average Tensile Strength (psi)	672	685	289
Stavola, 12M64							
	Stavola, 12	2M64		Tra	ap Rock (Pennii	ngton), 12H76	
Loading Time	Stavola, 12 Creep	2 M64 Compliance (1/psi)		ap Rock (Pennin Cree	n gton), 12H76 p Compliance (1	/psi)
Loading Time (sec)	Stavola, 12 Creep -4°F	2M64 Compliance (14°F	1/psi) 32°F	Tra	ap Rock (Pennii Cree -4°F	n gton), 12H76 p Compliance (1 14°F	/psi) 32°F
Loading Time (sec) 1.5	Stavola, 12 Creep -4°F 1.93313E-07	2M64 Compliance (14°F 3.09292E-07	1/psi) 32°F 5.22954E-07	Tra Loading Time (sec) 1.5	ap Rock (Pennin Cree -4°F 2.68445E-07	ngton), 12H76 p Compliance (1 14°F 2.14303E-07	/psi) 32°F 3.54558E-07
Loading Time (sec) 1.5 2.4	Stavola, 12 Creep -4°F 1.93313E-07 1.99919E-07	2M64 Compliance (14°F 3.09292E-07 3.30302E-07	1/psi) 32°F 5.22954E-07 5.88028E-07	Tra Loading Time (sec) 1.5 2.4	ap Rock (Pennin Cree -4°F 2.68445E-07 2.79325E-07	ngton), 12H76 p Compliance (1 14°F 2.14303E-07 2.35034E-07	/psi) 32°F 3.54558E-07 3.97690E-07
Loading Time (sec) 1.5 2.4 3.9	Stavola, 12 Creep -4°F 1.93313E-07 1.99919E-07 2.06890E-07	2M64 Compliance (14°F 3.09292E-07 3.30302E-07 3.54368E-07	1/psi) 32°F 5.22954E-07 5.88028E-07 6.60752E-07	Tra Loading Time (sec) 1.5 2.4 3.9	ap Rock (Pennie Cree -4°F 2.68445E-07 2.79325E-07 2.88658E-07	ngton), 12H76 p Compliance (1 14°F 2.14303E-07 2.35034E-07 2.50349E-07	/psi) 32°F 3.54558E-07 3.97690E-07 4.42472E-07
Loading Time (sec) 1.5 2.4 3.9 6.2	Stavola, 12 Creep -4°F 1.93313E-07 1.99919E-07 2.06890E-07 2.13542E-07	2M64 Compliance (14°F 3.09292E-07 3.30302E-07 3.54368E-07 3.79198E-07	1/psi) 32°F 5.22954E-07 5.88028E-07 6.60752E-07 7.38482E-07	Tra Loading Time (sec) 1.5 2.4 3.9 6.2	ap Rock (Pennie Cree -4°F 2.68445E-07 2.79325E-07 2.88658E-07 2.97763E-07	ngton), 12H76 p Compliance (1 2.14303E-07 2.35034E-07 2.50349E-07 2.64531E-07	/psi) 32°F 3.54558E-07 3.97690E-07 4.42472E-07 4.88676E-07
Loading Time (sec) 1.5 2.4 3.9 6.2 9.9	Stavola, 12 Creep -4°F 1.93313E-07 1.99919E-07 2.06890E-07 2.13542E-07 2.21059E-07	2M64 Compliance (14°F 3.09292E-07 3.30302E-07 3.54368E-07 3.79198E-07 4.08102E-07	1/psi) 32°F 5.22954E-07 5.88028E-07 6.60752E-07 7.38482E-07 8.28962E-07	Tra Loading Time (sec) 1.5 2.4 3.9 6.2 9.9	ap Rock (Pennie -4°F 2.68445E-07 2.79325E-07 2.88658E-07 2.97763E-07 3.08586E-07	ngton), 12H76 p Compliance (1 14°F 2.14303E-07 2.35034E-07 2.50349E-07 2.64531E-07 2.81027E-07	/psi) 32°F 3.54558E-07 3.97690E-07 4.42472E-07 4.88676E-07 5.42108E-07
Loading Time (sec) 1.5 2.4 3.9 6.2 9.9 15.9	Stavola, 12 Creep -4°F 1.93313E-07 1.99919E-07 2.06890E-07 2.13542E-07 2.21059E-07 2.28577E-07	2M64 Compliance (14°F 3.09292E-07 3.30302E-07 3.54368E-07 3.79198E-07 4.08102E-07 4.39936E-07	1/psi) 32°F 5.22954E-07 5.88028E-07 6.60752E-07 7.38482E-07 8.28962E-07 9.30965E-07	Tra Loading Time (sec) 1.5 2.4 3.9 6.2 9.9 15.9	ap Rock (Pennie -4°F 2.68445E-07 2.79325E-07 2.88658E-07 2.97763E-07 3.08586E-07 3.22214E-07	ngton), 12H76 p Compliance (1 14°F 2.14303E-07 2.35034E-07 2.50349E-07 2.64531E-07 2.81027E-07 2.96292E-07	/psi) 32°F 3.54558E-07 3.97690E-07 4.42472E-07 4.88676E-07 5.42108E-07 6.04643E-07
Loading Time (sec) 1.5 2.4 3.9 6.2 9.9 15.9 24.9	Stavola, 12 Creep -4°F 1.93313E-07 1.99919E-07 2.06890E-07 2.13542E-07 2.21059E-07 2.28577E-07 2.38099E-07	2M64 Compliance (14°F 3.09292E-07 3.30302E-07 3.54368E-07 3.79198E-07 4.08102E-07 4.39936E-07 4.77244E-07	1/psi) 32°F 5.22954E-07 5.88028E-07 6.60752E-07 7.38482E-07 8.28962E-07 9.30965E-07 1.05781E-06	Tra Loading Time (sec) 1.5 2.4 3.9 6.2 9.9 15.9 24.9	ap Rock (Pennia -4°F 2.68445E-07 2.79325E-07 2.88658E-07 2.97763E-07 3.08586E-07 3.22214E-07 3.39393E-07	ngton), 12H76 p Compliance (1 14°F 2.14303E-07 2.35034E-07 2.50349E-07 2.64531E-07 2.81027E-07 2.96292E-07 3.16481E-07	/psi) 32°F 3.54558E-07 3.97690E-07 4.42472E-07 4.88676E-07 5.42108E-07 6.04643E-07 6.79640E-07
Loading Time (sec) 1.5 2.4 3.9 6.2 9.9 15.9 24.9 39.9	Stavola, 12 Creep -4°F 1.93313E-07 1.99919E-07 2.06890E-07 2.13542E-07 2.21059E-07 2.28577E-07 2.38099E-07 2.49124E-07	2M64 Compliance (14°F 3.09292E-07 3.30302E-07 3.54368E-07 3.79198E-07 4.08102E-07 4.39936E-07 4.77244E-07 5.24612E-07	1/psi) 32°F 5.22954E-07 5.88028E-07 6.60752E-07 7.38482E-07 8.28962E-07 9.30965E-07 1.05781E-06 1.22271E-06	Tra Loading Time (sec) 1.5 2.4 3.9 6.2 9.9 15.9 24.9 39.9	ap Rock (Pennie -4°F 2.68445E-07 2.79325E-07 2.88658E-07 3.08586E-07 3.22214E-07 3.39393E-07 3.62126E-07	ngton), 12H76 p Compliance (1 14°F 2.14303E-07 2.35034E-07 2.50349E-07 2.64531E-07 2.81027E-07 2.96292E-07 3.16481E-07 3.38788E-07	/psi) 32°F 3.54558E-07 3.97690E-07 4.42472E-07 4.88676E-07 5.42108E-07 6.04643E-07 6.79640E-07 7.74838E-07
Loading Time (sec) 1.5 2.4 3.9 6.2 9.9 15.9 24.9 39.9 62.9	Stavola, 12 Creep -4°F 1.93313E-07 2.06890E-07 2.13542E-07 2.21059E-07 2.28577E-07 2.38099E-07 2.49124E-07 2.62519E-07	2M64 Compliance (14°F 3.09292E-07 3.30302E-07 3.54368E-07 3.79198E-07 4.08102E-07 4.39936E-07 4.77244E-07 5.24612E-07 5.82803E-07	1/psi) 32°F 5.22954E-07 5.88028E-07 6.60752E-07 7.38482E-07 8.28962E-07 9.30965E-07 1.05781E-06 1.22271E-06 1.42341E-06	Tra Loading Time (sec) 1.5 2.4 3.9 6.2 9.9 15.9 24.9 39.9 62.9	ap Rock (Pennie -4°F 2.68445E-07 2.79325E-07 2.88658E-07 3.08586E-07 3.22214E-07 3.39393E-07 3.62126E-07 3.81996E-07	ngton), 12H76 p Compliance (1 14°F 2.14303E-07 2.35034E-07 2.50349E-07 2.64531E-07 2.81027E-07 2.96292E-07 3.16481E-07 3.38788E-07 3.65478E-07	/psi) 32°F 3.54558E-07 3.97690E-07 4.42472E-07 4.88676E-07 5.42108E-07 6.04643E-07 6.79640E-07 7.74838E-07 8.92967E-07
Loading Time (sec) 1.5 2.4 3.9 6.2 9.9 15.9 24.9 39.9 62.9 99.9	Stavola, 12 Creep -4°F 1.93313E-07 1.99919E-07 2.06890E-07 2.13542E-07 2.21059E-07 2.28577E-07 2.38099E-07 2.49124E-07 2.62519E-07 2.78875E-07	2M64 Compliance (14°F 3.09292E-07 3.30302E-07 3.54368E-07 3.79198E-07 4.08102E-07 4.39936E-07 4.77244E-07 5.24612E-07 5.82803E-07 6.65315E-07	1/psi) 32°F 5.22954E-07 5.88028E-07 6.60752E-07 7.38482E-07 8.28962E-07 9.30965E-07 1.05781E-06 1.22271E-06 1.42341E-06 1.68031E-06	Tra Loading Time (sec) 1.5 2.4 3.9 6.2 9.9 15.9 24.9 39.9 62.9 99.9	ap Rock (Pennie Cree -4°F 2.68445E-07 2.79325E-07 2.88658E-07 2.97763E-07 3.08586E-07 3.08586E-07 3.22214E-07 3.39393E-07 3.62126E-07 3.81996E-07 4.06160E-07	ngton), 12H76 p Compliance (1 14°F 2.14303E-07 2.35034E-07 2.50349E-07 2.64531E-07 2.81027E-07 2.96292E-07 3.16481E-07 3.38788E-07 3.65478E-07 3.97042E-07	/psi) 32°F 3.54558E-07 3.97690E-07 4.42472E-07 4.88676E-07 5.42108E-07 6.04643E-07 6.79640E-07 7.74838E-07 8.92967E-07 1.04609E-06

Table 9 – NJDOT Level 1 Low Temperature Cracking Input Parameters for the MEPDG
PHASE 3 – EVALUATION OF PREDICTION EQUATIONS

The recommended method of determining the dynamic modulus under the Level 2 of the MEPDG is to utilize the predictive equation developed by Fonseca and Witczak (1996). The model is based on over 2800 dynamic modulus measurements from about 200 different asphalt mixtures tested in the laboratories of the Asphalt Institute, the University of Maryland, and the Federal Highway Administration. The initial set of predictive equations for the dynamic modulus was developed by Shook and Kallas (1969) of the Asphalt Institute (AI) when Witczak was working for the AI. As additional data became available, and Witczak accepted a teaching position at the University of Maryland, the equations were further refined to include the effects of mixture aging (Fonseca and Witczak, 1996) and also modified binders (Andrei et al., 1999).

The current form of the Witczak Predictive Equation (WPE) is shown as equation (5).

$$\log |E^*| = -1.249937(\rho_{200}) - 0.00176(\rho_{200})^2 - 0.00284(\rho_4) - 0.058097(V_a) - \frac{0.802208(V_{beff})}{V_{beff} + V_a} + \frac{3.871977 - 0.0021(\rho_4) + 0.003958(\rho_{38}) - 0.000017(\rho_{38})^2 + 0.00547(\rho_{34})}{1 + e^{(-0.603313 - 0.313351\log(f) - 0.393532\log(\eta))}}$$
(5)

where,

E^{*} = dynamic modulus, 10⁵ psi η = bitumen viscosity, 10⁶ poise f = loading frequency, Hz V_a = air void content, % V_{beff} = effective bitumen content, % by volume ρ_{34} = cumulative % retained on 19mm sieve ρ_{38} = cumulative % retained on 9.5mm sieve ρ_4 = cumulative % retained on 4.76 sieve ρ_{200} = cumulative % retained on 0.075mm sieve

The temperature dependency of the predicted modulus value is taken into account in the viscosity term of the binder. Thus, the viscosity of the binder is defined at the same temperature that the mixture stiffness is desired to be predicted. Equation (6) is used to define the viscosity temperature relationship for the WPE. The two main parameters in the equation, A and VTS, are the regression intercept and the regression slope, respectively, determined from ASTM D2493-85 "Standard Viscosity-Temperature Chart for Asphalt".

$$\log \log \eta = A + VTS \log T_R$$

where,

 η = viscosity, cP

(6)

T_R = temperature, ^oRankine A = regression intercept VTS = regression slope (Viscosity Temperature Susceptibility)

The original Hirsch model was developed by T.J. Hirsch to calculate the modulus of elasticity of cement concrete or mortar in terms of one empirical constant, the aggregate modulus and cement mastic modulus, and mix proportions. Hirsch assumed that the response of the constituent materials (cement matrix, aggregate, and the composite concrete) behaved in a linear elastic manner. Christensen et al. (2004) developed a relatively simple version of the Hirsch model to predict the dynamic modulus of hot mix asphalt from the complex shear modulus (G*) of the asphalt binder and the volumetric properties of the aggregate mixture (i.e. – voids in mineral aggregate and voids filled with asphalt). The functional form of the Hirsch model prediction equation is shown below.

$$|E^*|_{mix} = P_c \left[4,200,000 \left(1 - \frac{VMA}{100} \right) + 3 |G^*|_{binder} \left(\frac{VFA \times VMA}{10,000} \right) \right] + \frac{1 - P_c}{\left[\frac{\left(1 - \frac{VMA}{100} \right)}{4,200,000} + \frac{VMA}{3 |G^*|_{binder} (VFA)} \right]}$$

where,

$$P_{c} = \frac{\left(20 + \frac{3|G^{*}|(VFA)}{VMA}\right)^{0.58}}{650 + \left(\frac{3|G^{*}|(VFA)}{VMA}\right)^{0.58}}$$

E* = dynamic modulus of the hot mix asphalt (same temperature and loading frequency as G*)
G* = shear modulus of the asphalt binder
VMA = voids in mineral aggregate
VFA = voids filled with asphalt

Prediction Equation Testing Procedure

Both the Witczak Prediction Equation and Hirsch Model were compared to the measured dynamic modulus test results for all of the dense graded mixtures tested in the study. The specialty mixes (i.e. – SMA, HPTO, Strata, etc) were not evaluated since the prediction equations were developed only with dense graded mixtures.

The aggregate and general volumetric properties required in the prediction equations were taken from the HMA Mixture Design Summary Sheet provided to the NJDOT for approval. The asphalt binder properties were measured under RTFO (rolling thin film oven) aging conditions to simulate the aging that occurs during plant production for both PG76-22 and PG64-22 asphalt binders.

A total of 238 data points were compared between the measured values and the prediction equations (Witczak Prediction Equation and Hirsch Model). The prediction comparisons of the Witczak Prediction Equation and the Hirsch Model are shown in Figures 10 and 11, respectively. The results indicate that on average, the Witczak Prediction Equation provides a slightly better comparison to the measured dynamic modulus results than the Hirsch Model, 10.5 percent difference and 12.6 percent difference, respectively.

Figure 10 – Witczak Prediction Equations Predictions – All Data

Since it is well accepted that the asphalt binder stiffness plays a significant role in the stiffness of the asphalt mixture, the prediction equations were separated by asphalt binder grade evaluated (Figures 12 through 15). Both prediction equations show better correlations to the PG64-22 asphalt binder than the PG76-22 asphalt binder mixtures. This is logical since most of the datasets used to develop the prediction equations were based on neat asphalt binders.

Figure 12 – Witczak Prediction Equation – PG76-22 Binder Mixes

Figure 14 – Witczak Prediction Equations – PG64-22 Binder Mixes

Measured Dynamic Modulus (psi)

1.E+06

1.E+05

1.E+04

1.E+04

1.E+07

Figure 15 – Hirsch Model Predictions – PG64-22 Binder Mixes

PHASE 4 - DYNAMIC MODULUS VS ASPHALT MIXTURE PERFORMANCE

During the development of the study, sampled loose mix from various paving projects in New Jersey were evaluated under the modified dynamic modulus testing protocol. The sampled mixtures were also evaluated for their rutting susceptibility using the proposed testing protocol developed under NCHRP 9-33, *A Mix Design Manual for Hot Mix Asphalt*. A database, containing some of the mixtures sampled during this study as well as from other on-going studies, was also developed to evaluate the relationship between fatigue cracking resistance and the dynamic modulus.

Dynamic Modulus and Rutting Resistance

The relationship between dynamic modulus and rutting resistance was conducted by comparing the dynamic modulus, tested at 45°C, and the Flow Number, measured in the Asphalt Mixture Performance Tester and tested at 54°C. The Flow Number test was performed following the procedures given in NCHRP Report 629, *Ruggedness Testing of the Dynamic Modulus and Flow Number Tests with the Simple Performance Tester*. An applied deviatoric stress of 600 kPa was used with a test temperature of the average, 7-day maximum pavement temperature 20 mm from the surface, at 50 % reliability as determined using LTPPBind version 3.1 for the location of the original pavement (on average, this equated to 54°C). Table 10 lists minimum values for Flow Number as a function of design traffic level developed during NCHRP 9-33 project.

Traffic Level <i>Million</i> <i>ESALs</i>	Minimum Flow Number <i>Cycles</i>	Rut Resistance
< 3	< 340	Poor to Fair
3 to < 10	340	Good
10 to < 30	560	Very Good
≥ 30	890	Excellent

Table 10 - Minimum Flow Number Requirements (adapted from NCHRP Project 9-33)

Correlations between dynamic modulus, at each test frequency, and Flow Number are shown in Figures 16a through e. The average correlation coefficient (R^2) for all frequencies was approximately 0.68, with the best correlation found at the 0.5 Hz.

(a)

(b)

(C)

(d)

(e)

(f)

Figure 16a through g – Dynamic Modulus vs Flow Number for Plant Produced Asphalt Mixtures in New Jersey

By using the resultant regression equation for each set of data in conjunction with the Flow Number criteria shown in Table 10, minimum dynamic modulus requirements were developed. The minimum dynamic modulus requirements are shown in Table 11 and Figure 17.

Table 11 – Minimum Required Dynamic Modulus to Limit Rutting Potential of Asphalt Mixtures

Frequency	Minimum E* (ksi) to Obtain Flow Number at 54C			
(HZ) at 450	> 30M ESAL's	< 30M to > 10M ESAL's	< 10M ESAL's	
25	338	274	205	
10	238	187	133	
5	182	140	94	
1	95	69	41	
0.5	70	50	28	
0.1	38	26	13	

Figure 17 – Minimum Dynamic Modulus to Limit Rutting Potential of Asphalt Mixture

To utilize Table 11 and/or Figure 17, dynamic modulus testing is simply conducted on plant-produced mixtures compacted in the laboratory between 6 to 7% air voids at a test temperature of 45° C. The measured dynamic modulus can simply be compared with the requirements of Table 11 or be plotted against the requirements in Figure 17. To meet the traffic level, the dynamic modulus values must be greater than that shown in Table 11 and/or Figure 17.

Examples of dynamic modulus results for typical surface course mixtures, and how they would fit into the Limiting Rutting Potential graph are shown in Figures 18 through 21. Figure 18 shows the dynamic modulus results of a NJDOT 9.5M76 with 15% RAP. The test results indicate that this mixture should be sufficient for traffic levels between 10 to 30 millions ESAL's. However, it should be noted that the "M" mix designated by NJDOT is for traffic levels between 0.3 and 3 million ESAL's. The graph would suggest that NJDOT's "M" mix could actually be designed for more asphalt binder and most likely still be able to obtain a traffic level, according to NCHRP Project 9-33, of at least 3 million ESAL's.

Figure 18 – Limiting Rutting Potential Graph for NJDOT 9.5M76 with 15% RAP

Figures 19 and 20 show the test results of a 12.5M76 with 0% and 25% RAP, respectively. The results clearly demonstrate the stiffening affect when RAP is included. With 0% RAP, the asphalt mixture would be rated at limiting the rutting potential for traffic levels between 3 to 10 million ESAL's. Meanwhile, when 25% RAP is incorporated in the same mixture, the asphalt mixture would then be rated at limiting the rutting the rutting potential for traffic levels greater than 30 millions ESAL's.

Figure 19 – Limiting Rutting Potential Chart for NJDOT 12.5M76 with 0% RAP E* (ksi) must be above line

Figure 20 - Limiting Rutting Potential Chart for NJDOT 12.5M76 with 25% RAP

Figure 21 shows the results from a different asphalt supplier where the warm mix additive, Evotherm 3G, was used with a production temperature of 270F. Based on the Limiting Rutting Potential graph, the mixture would appear to be rated for a traffic level of approximately 3 million ESAL's.

Figure 21 – Limiting Rutting Potential Chart for NJDOT 12.5M76 with 25% RAP (Produced at 270F with Evotherm 3G)

Dynamic Modulus and Fatigue Cracking

Similar to the Limiting Rutting Potential graphs, a Limiting Fatigue Cracking Potential graph was developed for use with dynamic modulus test data. To establish dynamic modulus limits, comparisons were made using the Overlay Tester and established criteria developed by the Texas Department of Transportation (TxDOT).

The Overlay Tester is a relatively new test method developed by the Texas Transportation Institute, TTI. The test device simulates the expansion and contraction movements that occur in the joint/crack vicinity of PCC pavements. The test procedure is a fatigue-type test that has shown excellent correlations to fatigue cracking on flexible pavements, as well as reflective cracking on composite pavements (Figure 22).

Figure 22 – Picture of the Overlay Tester (Chamber Door Open)

Sample preparation and test parameters used in this study followed that of TxDOT Tex-248-F testing specifications. These include:

- 25°C (77°F) test temperature;
- o Opening width of 0.025 inches;
- Cycle time of 10 seconds (5 seconds loading, 5 seconds unloading); and
- Specimen failure defined as 93% reduction in Initial Load.

Twenty four different mixes, consisting of different nominal aggregate sizes, asphalt binder grades, and asphalt binder contents were used to develop a relationship between the fatigue cracking performance in the Overlay Tester and the dynamic modulus. During the initial analysis, both the 4.4°C (39.9°F) and 20°C (68°F) dynamic modulus test data were compared to the Overlay Tester results. Since a better correlation was found at the 20°C dynamic modulus test temperature, this data was used for the development of the Limiting Fatigue Cracking Potential graph. The correlations between the Overlay Tester fatigue cracking and the dynamic modulus at 20C and different loading frequencies are shown in Figures 23a through f. The graphs indicate a relatively good correlation exists between the dynamic modulus and the fatigue cracking resistance of the various NJDOT asphalt mixtures.

Based on the relationships developed in Figures 23a through f, recommendations were made to establish dynamic modulus values to aid in limiting cracking potential (Table 12 and Figure 24). The primary criteria used to establish these performance bands are based on the current TxDOT Overlay Tester criteria, shown below;

 Minimum 300 Cycles for general cracking resistance (primarily surface course mixtures) o Minimum 750 Cycles for immediately overlaying concrete/composite pavements

Table 16 and Figure 23 also include performance bands for 200 and 100 cycles in the Overlay Tester, respectively. This was simply included for possible future revisions to the proposed performance bands recommended in this report.

(b)

Figure 23 a through f – Correlations Between the Overlay Tester and Dynamic Modulus at 20C and Different Loading Frequencies

Frequency (Hz)	Maximum E* (ksi) to Obtain Overlay Cycles				
al 200	750	300	200	100	
25	729	969	1100	1364	
10	583	791	907	1145	
5	485	670	774	989	
1	300	432	509	673	
0.5	243	355	422	563	
0.1	136	209	254	352	

Table 12 – Dynamic Modulus Performance Bands for Limiting Fatigue Cracking Potential

Figure 24 – Proposed Limiting Fatigue Cracking Graph for Use with the Dynamic Modulus Test

To utilize Table 12 and/or Figure 24, dynamic modulus testing is simply conducted on plant-produced mixtures compacted in the laboratory between 6 to 7% air voids at a test temperature of 20° C. The measured dynamic modulus can be compared with the requirements of Table 16 or be plotted against the requirements in Figure 23. To meet the fatigue application level (i.e. – general pavements = minimum of 300 cycles; PCC/composite pavement overlays = minimum of 750 cycles), the dynamic modulus values must be less than that shown in Table 12 and/or Figure 24.

Examples of typical NJDOT asphalt mixtures and how they would compare in the proposed Limiting Fatigue Cracking Potential graph is shown in the upcoming figures. Figure 25 shows the dynamic modulus results of a reflective crack relief interlayer (Strata) that was used on Rt 202 during the NJDOT *Flexible Overlays for Rigid Pavements* study. Figure 25 clearly shows the dynamic modulus of the Strata mixture is well below the 750 cycles line, and therefore, should provide excellent fatigue cracking resistance for PCC/composite overlays.

Figure 25 – Proposed Limiting Fatigue Cracking Potential for Reflective Crack Relief Interlayer Mixture

Figure 26 shows the results of a NJDOT 4.75mm Rich Bottom Layer (RBL) asphalt mixture, which was utilized to overlay a PCC pavement on Rt 29. The RBL mixture plots below the 750 cycle line, although not as far below as the Reflective Crack Relief Interlayer. However, the RBL mixture would be classified as an asphalt mixture that would be recommended for placement over PCC/composite pavements to help reduce reflective cracking potential.

Figure 26 – Proposed Limiting Fatigue Cracking Potential for a 4.75mm Rich Bottom Layer Mixture

Figure 27 shows the results of a NJDOT 12.5M76 with 25% RAP. The test results clearly indicate the excessive stiffness of the mixture and would rate the asphalt mixture as one that would be prone to fatigue cracking.

Figure 27 – Limiting Fatigue Cracking Potential for a NJDOT 12.5M76 with 25% RAP

Figure 28 shows the test results of a NJDOT 12.5M76 with 25% RAP that was produced using the Evotherm 3G warm mix additive at 270F. It should be noted that the asphalt mixtures in Figure 26 and 27 are from different asphalt suppliers. The test results in Figure 28 indicate that the use of the warm mix technology, and dropping the production temperatures, helped to increase the fatigue resistance. Unfortunately, the fatigue cracking potential is still higher than what would be desired by the NJDOT.

Figure 28 – Proposed Limiting Fatigue Cracking Potential for a NJDOT 12.5M76 with 25% RAP (Produced at 270F with Evotherm 3G)

CONCLUSIONS AND RECOMMENDATIONS

The study evaluated the dynamic modulus properties of various asphalt mixtures currently approved by the New Jersey Department of Transportation (NJDOT). The study first evaluated the general precision of AASHTO TP62-07, *Standard Method of Test for Determining Dynamic Modulus of Hot-Mix Asphalt* and provided recommendations on how to improve the precision of the test procedure (shown in Phase 1). Once a modified test procedure was in-place, a dynamic modulus catalog was developed for use with the Mechanistic Empirical Pavement Design Guide (Phase 2). During the catalog's development, the Witczak Prediction Equation and the Hirsch Model were evaluated and compared with the measured dynamic modulus properties (Phase 3). The mixtures collected and tested during this study also were used to generate a performance-criteria (rutting and fatigue cracking) solely based on the dynamic modulus properties of the asphalt mixtures. Based on the work conducted during this study, the following conclusions and recommendations can be drawn:

Conclusions – Precision of the Dynamic Modulus Test

A research study was conducted to assess the general precision of AASHTO TP62-07 through a Round Robin-type study. Loose mix was prepared and provided to seven

different laboratories that were asked to prepare and test the specimens in accordance with AASHTO TP62-07. The test data was then evaluated in a precision statement environment, as well as in the Mechanistic Empirical Pavement Design Guide software. Based these analyses, the following conclusions were drawn:

- Not all laboratories were capable of testing HMA mixtures at the 14°F test temperature in AASHTO TP62-07. Since the MEPDG currently requires the 14°F test temperature for the generation of the master stiffness curve, a procedure such as the reduced testing procedure recommended by Bonaquist and Christensen (2006) would be required.
- The variability of the dynamic modulus (E*) was greatest at the low testing temperatures with over 50% of the variance being associated with the laboratory itself. Since some labs are currently not capable of testing at 14°F and those that did showed the highest level of variance, the elimination of this test temperature should be considered.
- The variability of phase angle (φ) was greatest at the low and high testing temperatures. This may have been due to non-linearity or micro-strain values falling outside of the recommended range of 50 to 150 micro-strains.
- The use of a Black Space diagram may help to pre-screen test data to ensure non-linearity in the testing did not occur. As shown in this study, laboratories whose Black Space diagrams showed non-linearity had micro-strain values with a relatively high range within a given test temperature.
- The proportion of variance associated with multiple laboratories was significantly larger for non-SPT devices than for SPT devices. Therefore, laboratories considering the future purchase of dynamic modulus test equipment may want to consider procuring a test machine capable of adhering to the specifications of the SPT units. However, it should be noted that only one manufacturer's SPT machine was involved in the study. This may have attributed to the better precision of the test data.
- A Precision Statement was generated for AASHTO TP62-07 utilizing the test data for all laboratories at all test temperatures and loading frequencies. The Precision Statement indicated that:
 - For Single Operator:
 - Dynamic Modulus: 1S% = 13.03; D2S% = 36.47
 - Phase Angle: 1S% = 6.76; D2S% = 18.93
 - Multi-Laboratory:
 - Dynamic Modulus: 1S% = 26.89; D2S% = 75.3
 - Phase Angle: 1S% = 19.46; D2S% = 54.49
- Additional Precision Statements were generated for other testing scenarios, including an abridged test procedure that eliminated the low and high test temperatures and also by separating the SPT and Non-SPT devices. The results indicated that the use of the SPT devices with the elimination of the low and high test temperatures produced the best precision characteristics.
- The outputs from the MEPDG pavement distress predictions showed minimal differences in HMA Rutting and % Alligator Cracking between the different laboratories, while large differences in Longitudinal Cracking had occurred for the pavement section evaluated. This may mean that some pavement distresses in

the MEPDG are insensitive to dynamic modulus variations from different laboratories, while others are more sensitive. State agencies should recognize this prior to model calibration.

Conclusions – Evaluation of Prediction Equations

- Overall, the Witczak Prediction Equation provided a better comparison to the measured dynamic modulus values than the Hirsch Model. The average percent difference found with the Witczak Prediction Equation was 10.5%, compared to 12.6% percent difference of the Hirsch model.
- The comparisons of the predicted dynamic modulus values were found to be better for the PG64-22 asphalt binders than for the polymer modified PG76-22 asphalt binders. This may have been expected as the original dynamic modulus datasets used to develop the prediction equations primarily consisted of unmodified (neat) asphalt binders, such as the PG64-22 asphalt binder in this study.
- The use of rolling thin film oven (RTFO) aged asphalt binders resulted in reasonable predicted dynamic modulus values for both the Witczak Prediction Equation and the Hirsch Model. This indicates that RTFO aged asphalt binders result in aging that compares favorably to the aging that occurs during plant production of the hot mix asphalt mixtures.

<u>Conclusions – Development of Proposed Performance Criteria Using the Dynamic</u> <u>Modulus Test</u>

The database of asphalt mixture performance was correlated to the measured dynamic modulus results for the asphalt mixtures evaluated in this study, as well as the database developed by Rutgers University of the past two years. For permanent deformation (i.e. – rutting), the dynamic modulus was correlated to the Flow Number, measured in the Asphalt Mixture Performance Tester (AMPT). The proposed Flow Number vs Allowable ESAL's, developed during the NCHRP 9-33 research project, was used to establish dynamic modulus guidelines to limit permanent deformation potential. For the fatigue cracking, the dynamic modulus was correlated to the fatigue cracking results of the Overlay Tester. Overlay Tester criteria, currently implemented by the Texas Department of Transportation (TxDOT), were used to establish dynamic modulus guidelines to limit permanent.

The research showed that relatively good correlations were found between the dynamic modulus and the permanent deformation and fatigue cracking properties of the asphalt mixtures. Overall, the Flow Number and Dynamic Modulus properties had an average correlation coefficient (R²) of 0.68, when eliminating the 0.01 Hz dynamic modulus test results. Using the correlations developed for each loading frequency, recommended dynamic modulus "bands" were generated for different ESAL levels, shown as Table 11 and Figure 17.

For the fatigue cracking potential, an average correlation coefficient (R^2) of 0.78 was found between the Dynamic Modulus and Overlay Tester results. Using the correlations developed, dynamic modulus "bands" were generated and shown in Table 12 and Figure 24. The performance bands recommend maximum dynamic modulus values for generally "good" fatigue resistance of asphalt mixtures, as well as required fatigue performance for placement over PCC/composite pavements (i.e. – mixtures like Reflective Crack Relief Interlayers, Rich Bottom Layer, High Performance Thin Overlays) as indicated by field comparisons at TxDOT.

Recommendations – Precision of the Dynamic Modulus Test

For use in the MEPDG, it is recommended that the 14°F (-10°C) test temperature be eliminated from the testing scheme of AASHTO TP62-07. Not only did three of the seven laboratories not have the capabilities of testing at this temperature, the dynamic modulus results at the 14°F showed the highest variance among the five test temperatures. For the pavement scenario utilized in this study, this resulted in a reduction of approximately 35 ft/mile for the Longitudinal Cracking and produced minimal changes in HMA Rutting and % Alligator Cracking.

Further evaluation of limiting or eliminating the $130^{\circ}F$ (54.4°C) test temperature should be conducted. In this study, the $130^{\circ}F$ test temperature produced the second highest degree of variation among the five test temperatures specified in AASHTO TP62-07. The phase angle measured at the $130^{\circ}F$ test temperature showed the highest level of laboratory variance, meaning the majority of the error involved in the phase angle test data can be attributed to the laboratory testing equipment. This may have been due to error in the applied load waveform or non-linearity associated with testing outside of the linear-elastic range of the material. This was further validated by evaluating the Black Space diagrams of the different laboratories. To ensure the master stiffness curves are constructed properly, a 0.01 Hz loading frequency can be added to the $100^{\circ}F$ (37.8°C) test temperature, similar to that recommended by Bonaquist and Christensen (*20*).

Allowable micro-strain ranges in AASHTO TP62-07 should be reduced to a range of 75 to 125 micro-strains, as currently recommended in the NCHRP 9-29 project. The general test results of the different laboratories whose micro-strain levels were within this range showed better agreement.

Recommendations – Evaluation of Prediction Equations

Both the Witczak Prediction Equation and the Hirsch Model can be used with confidence to provide reasonable estimates of the dynamic modulus for use in the Mechanistic Empirical Pavement Design Guide (MEPDG). However, caution should be taken when using more heavily modified asphalt binders. As shown with the PG76-22 asphalt binders, the percent difference increases when the asphalt binders are polymer-modified. Therefore, it is recommended that the prediction equations not be used for the more heavily modified asphalt binders (i.e. – reflective cracking relief interlayer, bridge deck wearing course, etc.).

Recommendations – Use of the Dynamic Modulus Catalog

Caution should be used when selecting the appropriate mixture from the Dynamic Modulus Catalog. During MEPDG use, it is recommended that a mixture be selected to best represent the location for where it will be used. For example, selecting a 12H76 mixture from Tilcon, Mt. Hope is not recommended when the HMA is to be placed in central or southern New Jersey.

Caution should also be taken where higher RAP or warm mix asphalt is to be used. Research by Rutgers University has shown that increased levels of RAP significantly increase the dynamic modulus of HMA, while the lower production temperatures associated with warm mix asphalt result in lower dynamic modulus values due to lesser levels of oxidative aging.

Recommended dynamic modulus values for different NJDOT approved asphalt mixtures can be found in the Appendix of this document.

Recommendations – Use of Dynamic Modulus for Performance Indicator

It is recommended to start evaluating plant-produced asphalt mixtures using the Dynamic Modulus test procedure recommended in this report. The resultant test results can be used to help predict the general permanent deformation and fatigue cracking properties of currently approved NJDOT asphalt mixtures. Based on the test results illustrated in this report, it is clear that a majority of NJDOT asphalt mixtures are excessive with respect to stiffness. The test results clearly show the asphalt mixtures are highly rut resistant, while being highly susceptible to fatigue cracking.

Based on these results, it is clear that there exists a need to "shift" the NJDOT asphalt mixtures towards a more fatigue resistant area. This can be clearly accomplished by increasing the effective asphalt binder content of the asphalt mixtures. The effective asphalt content has been found by a number of researchers to by the most sensitive parameter with respect to the fatigue resistance of asphalt mixtures. Increasing the effective asphalt content of the asphalt mixtures asphalt content of the asphalt mixture can be accomplished through one or more of the following:

- Decrease the design gyration level of the asphalt mixtures. A review of the Flow Number correlations and the respective gyration level of the NJDOT designed mixtures. The results showed that the NJDOT mixture are performing at an ESAL range approximately 1 to 2 levels higher than designed for. For example, the NJDOT 9.5M76 shown in Figure 17 is rated for 10 to 30 million ESAL's based on its Flow Number performance. However, based on Superpave recommendations, the gyration level of "M" is for traffic levels ranging between 0.3 to 3 million ESAL's.
- Increase the minimum voids in mineral aggregate (VMA). Increasing the VMA requirements will result in a required increase in the effective asphalt content.

Unfortunately, this change will most likely require redesigning a majority of the asphalt mixtures currently approved by the NJDOT.

 Decrease the target air voids during mixture design. By decreasing the target air voids, additional asphalt binder would be required to

REFERENCES

- 1. NCHRP 1-37A Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, Final Report, NCHRP, ARA Inc. and ERES Consultants Division, Washington, D.C., March 2004.
- 2. AASHTO Designation, R30, "Mixture Conditioning of Hot Mix Asphalt (HMA)", American Association of State Highway and Transportation Officials, AASHTO.
- 3. AASHTO Designation, TP62-07, "Standard Method of Test for Determining Dynamic Modulus of Hot-Mix Asphalt Concrete Mixture", American Association of State Highway and Transportation Officials, AASHTO.
- 4. Bonaquist, R., 2008, *Refining the Simple Performance Tester for Use in Routine Practice*, NCHRP Report 614, National Cooperative Highway Research Program, Washington, D.C.
- Bonaquist, R. and D. Christensen, 2005,"Practical Procedure for Developing Dynamic Modulus Master Curves for Pavement Structural Design", *Transportation Research Record: Journal of the Transportation Research Board, No. 1929,* Transportation Research Board of the National Academies, Washington, D.C., pp. 208 – 217.
- Christensen, D. W., T. Pellinen, and R. Bonaquist, 2003, "Hirsch Model for Estimating the Modulus of Asphalt Concrete", *Asphalt Paving Technology*, Association of Asphalt Paving Technologists, Vol. 72, pp. 97 – 121.
- AASHTO Designation, T322-07, "Standard Method of Test for Determining the Creep Compliance and Strength of Hot-Mix Asphalt (HMA) Using the Indirect Tensile Test Device", American Association of State Highway and Transportation Officials, AASHTO.
- 8. NCHRP 1-37A Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, Final Report, NCHRP, ARA Inc. and ERES Consultants Division, Washington, D.C., March 2004.
- AASHTO Designation, TP62-07, "Standard Method of Test for Determining Dynamic Modulus of Hot-Mix Asphalt Concrete Mixture", American Association of State Highway and Transportation Officials, AASHTO.

- 10. King, M., 2004, Determination of Dynamic Moduli in Uniaxial Compression for North Carolina Hot Mix Asphalt Concrete, A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science, North Carolina State University, 133 pp.
- 11. Shah, A., R. McDaniel, and V. Gallivan, 2005, "Evaluation of Mixtures Using Dynamic Modulus Tester: Results and Practical Considerations", *Electronic Journal of the Asphalt Paving Technology*, Association of Asphalt Paving Technologists, Vol. 74E.
- Tran, N. and K. Hall, 2006, "Dynamic Modulus of Hot-Mix Asphalt", *Transportation Research Record: Journal of the Transportation Research Board, No. 1970*, Transportation Research Board of the National Academies, Washington, D.C., pp. 126 – 132.
- Birgisson, B. and R. Roque, 2005, "Evaluation of the Gradation Effect on the Dynamic Modulus", *Transportation Research Record: Journal of the Transportation Research Board, No. 1929*, Transportation Research Board of the National Academies, Washington, D.C., pp. 193 – 199.
- Robinette, C. and R.C. Williams, 2006, "The Effects of the Testing History and Preparation Method on the Superpave Simple Performance Test", *Asphalt Paving Technology*, Association of the Asphalt Paving Technologists, Vol. 75, pp. 297 – 320.
- 15. Andrei, D., M. Witczak, and M. W. Mirza, 1999, *Development of Revised Predictive Model for the Dynamic (Complex) Modulus of Asphalt Mixtures: Development of the 2002 Guide for the Design of New and Rehabilitated Pavement Structures, NCHRP 1-37A*, Interim Team Technical Report, Department of Civil Engineering, University of Maryland, College Park.
- Christensen, D. W., T. Pellinen, and R. Bonaquist, 2003, "Hirsch Model for Estimating the Modulus of Asphalt Concrete", *Asphalt Paving Technology*, Association of Asphalt Paving Technologists, Vol. 72, pp. 97 – 121.
- 17. Tran, N. and K. Hall, 2005,"Evaluating the Predictive Equation in Determining Dynamic Moduli of Typical Asphalt Mixtures Used in Arkansas", *Electronic Journal of the Asphalt Paving Technology*, Association of Asphalt Paving Technologists, Vol. 74E.
- Dongré, R., 2007, Predicted vs. SPT Measured E* Values at 10°F and 130°F, Presented at the February 2007 Meeting of the FHWA Expert Task Group on HMA Mixtures, Phoenix, AZ.

- Bari, J. and M. Witczak, 2006, "Development of a New Revised Version of the Witczak E* Predictive Model for Hot Mix Asphalt Mixtures", *Asphalt Paving Technology*, Association of Asphalt Paving Technologists, Vol. 75, pp. 381 – 424.
- 20. Birgisson, B., G. Sholar, and R. Roque, 2005, "Evaluation of a Predicted Dynamic Modulus for Florida Mixtures", *Transportation Research Record: Journal of the Transportation Research Board, No. 1929*, Transportation Research Board of the National Academies, Washington D.C., pp. 200 – 207.
- 21. Bonaquist, R., 2006, *Comparison of AASHTO TP62 and NCHRP Project 9-29 Simple Performance Test System*, Presented at the May 2006 Meeting of the FHWA Expert Task Group on HMA Mixtures.
- 22. Bonaquist, R., D. Christensen, and W. Stump, 2003, *Simple Performance Tester for Superpave Mix Design: First Article Development and Evaluation*, NCHRP Report 513, National Cooperative Highway Research Program, Washington, D.C.
- 23. Pellinen, T., 2001, *Investigation of the Use of Dynamic Modulus As An Indicator of Hot-Mix Asphalt Performance*, A Dissertation Presented in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy, Submitted to the Faculty of Graduate School of Arizona State University, Tempe, AZ., 566, pp.
- 24. Pellinen, T., and M.W. Witczak, 2002, "Stress Dependent Master Curve Construction for Dynamic (Complex) Modulus", *Asphalt Paving Technology*, Association of Asphalt Paving Technologists, Vol. 71, pp. 281 – 309.
- 25. Tran, N. and K. Hall, 2005, "Evaluation of Testing Protocols for Dynamic Modulus of Hot-Mix Asphalt", *Transportation Research Record: Journal of the Transportation Research Board, No. 1970*, Transportation Research Board of the National Academies, Washington, D.C., pp. 126 – 132.
- 26. ASTM E691, "Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method", *Annual Book of ASTM Standards*, Vol. 14.02, ASTM, Philadelphia, PA., 2007.
- 27. Bonaquist, R. and D. Christensen, 2005,"Practical Procedure for Developing Dynamic Modulus Master Curves for Pavement Structural Design", *Transportation Research Record: Journal of the Transportation Research Board, No. 1929,* Transportation Research Board of the National Academies, Washington, D.C., pp. 208 – 217.
- 28. AASHTO Designation, T322-07, "Standard Method of Test for Determining the Creep Compliance and Strength of Hot-Mix Asphalt (HMA) Using the Indirect Tensile Test Device", American Association of State Highway and Transportation Officials, AASHTO.

APPENDIX

Dynamic Modulus Catalog Data

Earle Asphalt - Jackson, NJ				
Temperature (F)	Frequency (Hz)	E* (psi)	-	
	25.0	2,491,498		
	10.0	2,385,932		
10.0	5.0	2,297,798		
10.0	1.0	2,065,372		
	0.5	1,953,732		
	0.1	1,671,528		
	25.0	2,124,115		
	10.0	1,980,016		
40.0	5.0	1,863,467		
40.0	1.0	1,572,360		
	0.5	1,440,849		
	0.1	1,132,223		
	25.0	1,110,302		
	10.0	940,171		
70.0	5.0	817,472		
70.0	1.0	562,419		
	0.5	468,447		
	0.1	291,552		
	25.0	400,284		
	10.0	303,988		
100.0	5.0	243,431		
100.0	1.0	139,578		
	0.5	108,319		
	0.1	58,968		
	25.0	121,866		
130.0	10.0	86,669		
	5.0	66,630		
	1.0	36,032		
	0.5	27,745		
	0.1	15,472		

Dynamic Modulus Results for NJDOT 9.5H76 Mixes

Trap Rock Industries - Mt. Holly, NJ					
Temperature (F)	Frequency (Hz)	E* (psi)			
	25.0	2,768,926			
	10.0	2,689,222			
10.0	5.0	2,619,236			
10.0	1.0	2,420,216			
	0.5	2,317,389			
	0.1	2,037,211			
	25.0	2,487,296			
	10.0	2,359,124			
40.0	5.0	2,249,773			
40.0	1.0	1,954,805			
	0.5	1,811,483			
	0.1	1,451,315			
	25.0	1,476,572			
	10.0	1,263,517			
70.0	5.0	1,103,290			
70.0	1.0	754,559			
	0.5	621,908			
	0.1	370,243			
	25.0	554,767			
	10.0	412,381			
100.0	5.0	322,975			
100.0	1.0	172,984			
	0.5	129,744			
	0.1	65,212			
	25.0	157,389			
	10.0	107,086			
130.0	5.0	79,575			
150.0	1.0	40,075			
	0.5	30,132			
	0.1	16,278			

Ti	ilcon - Mt. Hope, NJ		1	Filcon - Oxford, NJ	
Temperature (F)	Frequency (Hz)	E* (psi)	Temperature (F)	Frequency (Hz)	E* (psi)
	25.0	2,732,850		25.0	2,958,215
	10.0	2,633,712		10.0	2,890,551
10.0	5.0	2,549,016	10.0	5.0	2,831,434
10.0	1.0	2,317,840	10.0	1.0	2,663,971
	0.5	2,203,018		0.5	2,577,425
	0.1	1,902,654		0.1	2,339,870
	25.0	2,392,438		25.0	2,706,187
	10.0	2,247,171		10.0	2,596,192
40.0	5.0	2,126,685	40.0	5.0	2,502,252
40.0	1.0	1,814,649	40.0	1.0	2,246,899
	0.5	1,668,734		0.5	2,121,049
	0.1	1,315,114		0.1	1,796,451
	25.0	1,333,791		25.0	1,765,107
	10.0	1,131,388		10.0	1,563,803
70.0	5.0	982,244	70.0	5.0	1,408,195
70.0	1.0	664,987	70.0	1.0	1,051,343
	0.5	546,355		0.5	906,241
	0.1	323,108		0.1	607,533
	25.0	483,607		25.0	790,817
	10.0	357,919		10.0	625,714
100.0	5.0	279,222	100.0	5.0	515,661
100.0	1.0	147,167	100.0	1.0	313,228
	0.5	109,033		0.5	248,215
	0.1	52,205		0.1	140,782
	25.0	132,500		25.0	274,851
	10.0	88,405	130.0	10.0	200,491
130.0	5.0	64,334		5.0	156,796
130.0	1.0	30,101		1.0	87,875
	0.5	21,668		0.5	68,688
	0.1	10,303		0.1	39,781

Dynamic Modulus Results for NJDOT 12H76 Mixes (Part 1)

Trap Rock Industries - Kingston, NJ		Trap Rock Industries - Pennington, NJ			
Temperature (F)	Frequency (Hz)	E* (psi)	Temperature (F)	Frequency (Hz)	E* (psi)
	25.0	2,919,092		25.0	2,952,027
	10.0	2,860,857		10.0	2,891,352
10.0	5.0	2,808,585	10.0	5.0	2,836,982
10.0	1.0	2,654,511	10.0	1.0	2,677,182
	0.5	2,571,897		0.5	2,591,753
	0.1	2,336,653		0.1	2,349,380
	25.0	2,707,128		25.0	2,733,000
	10.0	2,605,451		10.0	2,627,995
40.0	5.0	2,516,232	40.0	5.0	2,536,053
40.0	1.0	2,264,307	40.0	1.0	2,277,363
	0.5	2,135,868		0.5	2,145,971
	0.1	1,794,619		0.1	1,798,417
	25.0	1,818,637		25.0	1,828,539
	10.0	1,604,441		10.0	1,611,723
70.0	5.0	1,436,039	70.0	5.0	1,441,721
70.0	1.0	1,044,317	70.0	1.0	1,047,769
	0.5	884,597		0.5	887,702
	0.1	560,614		0.1	563,861
	25.0	800,462		25.0	807,743
	10.0	616,551		10.0	623,396
100.0	5.0	495,547	100.0	5.0	502,137
100.0	1.0	280,251	100.0	1.0	286,157
	0.5	214,515		0.5	220,020
	0.1	112,178		0.1	116,564
	25.0	256,541		25.0	263,895
	10.0	179,060	130.0	10.0	185,421
130.0	5.0	135,344		5.0	140,954
100.0	1.0	70,462		1.0	74,486
	0.5	53,637		0.5	57,089
	0.1	29,758		0.1	32,176

Dynamic Modulus Results for NJDOT 12H76 Mixes (Part 2)

Stavola Companies - Bound Brook, NJ				
Temperature (F)	Frequency (Hz)	E* (psi)		
	25.0	2,760,824		
	10.0	2,697,099		
10.0	5.0	2,643,209		
10.0	1.0	2,497,278		
	0.5	2,424,789		
	0.1	2,232,643		
	25.0	2,449,171		
	10.0	2,346,604		
40.0	5.0	2,261,767		
40.0	1.0	2,040,661		
	0.5	1,935,458		
	0.1	1,671,178		
	25.0	1,517,241		
	10.0	1,353,219		
70.0	5.0	1,228,250		
70.0	1.0	943,985		
	0.5	827,817		
	0.1	583,104		
	25.0	671,349		
	10.0	541,638		
100.0	5.0	453,775		
100.0	1.0	286,531		
	0.5	230,290		
	0.1	132,761		
	25.0	237,315		
	10.0	175,003		
120.0	5.0	137,268		
130.0	1.0	75,449		
	0.5	57,645		
	0.1	30,431		

Dynamic Modulus Results for NJDOT 12H76 Mixes (Part 3)

Earle Asphalt - Jackson, NJ		Trap Rock - Kingston, NJ (25% RAP)			
Temperature (F)	Frequency (Hz)	E* (psi)	Temperature (F)	Frequency (Hz)	E* (psi)
	25.0	2,782,412		25.0	2,795,523
	10.0	2,703,372	10.0	10.0	2,718,072
10.0	5.0	2,635,203		5.0	2,650,439
	1.0	2,446,070		1.0	2,459,457
	0.5	2,350,402		0.5	2,361,309
	0.1	2,094,284		0.1	2,094,703
	25.0	2,470,821		25.0	2,527,854
	10.0	2,345,670		10.0	2,405,949
40.0	5.0	2,240,735	40.0	5.0	2,302,218
40.0	1.0	1,963,863	40.0	1.0	2,022,781
	0.5	1,831,637		0.5	1,886,788
	0.1	1,502,702		0.1	1,542,794
	25.0	1,441,124		25.0	1,581,980
	10.0	1,246,570		10.0	1,376,528
70.0	5.0	1,101,137	70.0	5.0	1,219,892
70.0	1.0	784,038	70.0	1.0	869,923
	0.5	661,780		0.5	732,252
	0.1	422,922		0.1	460,252
	25.0	554,811		25.0	670,978
	10.0	426,354		10.0	515,377
100.0	5.0	344,065	100.0	5.0	414,152
100.0	1.0	200,253	100.0	1.0	235,268
	0.5	156,328		0.5	180,596
	0.1	86,447		0.1	94,767
	25.0	171,644		25.0	219,291
	10.0	122,985	130.0	10.0	153,730
130.0	5.0	95,180		5.0	116,435
100.0	1.0	52,593		1.0	60,353
	0.5	41,021		0.5	45,602
	0.1	23,802		0.1	24,491

Dynamic Modulus Results for NJDOT 12M76 Mixes
Earle Asphalt - Jackson, NJ			
Temperature (F)	Frequency (Hz)	E* (psi)	
	25.0	2,661,251	
	10.0	2,567,681	
10.0	5.0	2,487,184	
10.0	1.0	2,265,350	
	0.5	2,154,231	
	0.1	1,861,390	
	25.0	2,417,741	
	10.0	2,287,973	
40.0	5.0	2,178,873	
40.0	1.0	1,890,357	
	0.5	1,752,534	
	0.1	1,410,765	
	25.0	1,438,240	
	10.0	1,237,868	
70.0	5.0	1,087,485	
70.0	1.0	758,927	
	0.5	632,573	
	0.1	388,163	
	25.0	594,733	
	10.0	452,184	
100.0	5.0	360,409	
100.0	1.0	200,386	
	0.5	152,169	
	0.1	77,480	
	25.0	200,921	
120.0	10.0	139,330	
	5.0	104,414	
130.0	1.0	52,305	
	0.5	38,772	
	0.1	19,725	

Dynamic Modulus Results for NJDOT 12H64 Mixes

Ti	ilcon - Mt. Hope, NJ		Stav	ola - Bound Brook, I	NJ
Temperature (F)	Frequency (Hz)	E* (psi)	Temperature (F)	Frequency (Hz)	E* (psi)
	25.0	2,684,803		25.0	1,976,239
	10.0	2,567,843		10.0	1,841,754
10.0	5.0	2,467,842	10.0	5.0	1,734,721
10.0	1.0	2,195,670	10.0	1.0	1,472,451
	0.5	2,061,451		0.5	1,355,637
	0.1	1,715,545		0.1	1,083,363
	25.0	2,401,888		25.0	1,663,448
	10.0	2,245,415		10.0	1,513,389
40.0	5.0	2,115,090	40.0	5.0	1,397,131
40.0	1.0	1,776,648	40.0	1.0	1,124,531
	0.5	1,618,576		0.5	1,008,935
	0.1	1,238,473		0.1	754,216
	25.0	1,341,027		25.0	810,183
	10.0	1,124,591		10.0	673,918
70.0	5.0	965,561	70.0	5.0	578,511
70.0	1.0	630,930		1.0	387,375
	0.5	508,152		0.5	319,264
	0.1	283,649		0.1	194,222
	25.0	510,364		25.0	315,970
	10.0	371,495		10.0	239,839
100.0	5.0	285,149	100.0	5.0	191,933
100.0	1.0	142,923	100.0	1.0	109,403
	0.5	103,085		0.5	84,389
	0.1	45,937		0.1	44,692
	25.0	155,807		25.0	115,609
	10.0	101,404	130.0	10.0	82,090
130.0	5.0	72,059		5.0	62,693
130.0	1.0	31,440	130.0	1.0	32,629
	0.5	21,854		0.5	24,434
	0.1	9,525		0.1	12,409

Dynamic Modulus Results for NJDOT 12M64 Mixes

Earle	Asphalt - Jackson,	NJ	Tra	p Rock - Kingston, N	IJ
Temperature (F)	Frequency (Hz)	E* (psi)	Temperature (F)	Frequency (Hz)	E* (psi)
	25.0	2,894,806		25.0	2,843,812
	10.0	2,832,622		10.0	2,768,929
10.0	5.0	2,778,082	10.0	5.0	2,702,767
10.0	1.0	2,622,542	10.0	1.0	2,512,714
	0.5	2,541,563		0.5	2,413,488
	0.1	2,317,233		0.1	2,139,774
	25.0	2,663,798		25.0	2,570,793
	10.0	2,561,367		10.0	2,446,534
40.0	5.0	2,473,360	40.0	5.0	2,339,751
40.0	1.0	2,231,676	40.0	1.0	2,048,365
	0.5	2,111,229		0.5	1,905,083
	0.1	1,796,405		0.1	1,540,195
	25.0	1,773,376		25.0	1,542,399
	10.0	1,575,059		10.0	1,323,163
70.0	5.0	1,419,957	70.0	5.0	1,157,231
70.0	1.0	1,058,221		1.0	793,119
	0.5	908,752		0.5	653,635
	0.1	597,269		0.1	387,842
	25.0	794,710		25.0	568,733
	10.0	621,465		10.0	420,761
100.0	5.0	505,300	100.0	5.0	328,051
100.0	1.0	291,657	100:0	1.0	173,374
	0.5	223,814		0.5	129,169
	0.1	114,691		0.1	63,865
	25.0	253,762		25.0	153,216
120.0	10.0	176,363	130.0	10.0	103,217
	5.0	131,867		5.0	76,138
100.0	1.0	64,771		1.0	37,767
	0.5	47,315		0.5	28,247
	0.1	22,978		0.1	15,131

Dynamic Modulus Results for NJDOT 19H76 Mixes

R.E. Pierson - Swedesboro, NJ			
Temperature (F)	Frequency (Hz)	E* (psi)	
	25.0	2,822,098	
	10.0	2,743,667	
10.0	5.0	2,675,975	
10.0	1.0	2,487,819	
	0.5	2,392,405	
	0.1	2,135,988	
	25.0	2,541,160	
	10.0	2,420,234	
40.0	5.0	2,318,340	
40.0	1.0	2,047,040	
	0.5	1,916,090	
	0.1	1,585,913	
	25.0	1,576,471	
	10.0	1,377,889	
70.0	5.0	1,226,605	
70.0	1.0	887,065	
	0.5	752,127	
	0.1	481,061	
	25.0	660,424	
	10.0	509,514	
100.0	5.0	410,571	
100.0	1.0	233,402	
	0.5	178,452	
	0.1	91,314	
	25.0	205,938	
	10.0	142,820	
130.0	5.0	106,826	
130.0	1.0	52,813	
	0.5	38,755	
	0.1	19,045	

Dynamic Modulus Results for NJDOT 19H76 Mixes (Part 2)

Earle Asphalt - Jackson, NJ			
Temperature (F)	Frequency (Hz)	E* (psi)	
	25.0	2,778,554	
	10.0	2,676,581	
10.0	5.0	2,586,554	
10.0	1.0	2,330,191	
	0.5	2,198,538	
	0.1	1,846,642	
	25.0	2,397,883	
	10.0	2,230,554	
40.0	5.0	2,089,295	
40.0	1.0	1,718,843	
	0.5	1,546,036	
	0.1	1,138,001	
	25.0	1,288,904	
	10.0	1,059,734	
70.0	5.0	895,129	
70.0	1.0	563,995	
	0.5	449,202	
	0.1	251,026	
	25.0	470,537	
	10.0	341,721	
100.0	5.0	264,433	
100.0	1.0	141,795	
	0.5	108,138	
	0.1	58,995	
	25.0	158,427	
	10.0	110,683	
130.0	5.0	84,734	
130.0	1.0	47,240	
	0.5	37,574	
	0.1	23,590	

Dynamic Modulus Results for NJDOT 19M64 Mixes

Trap Rock - Kingston, NJ			
Temperature (F)	Frequency (Hz)	E* (psi)	
	25.0	2,994,250	
	10.0	2,938,433	
10.0	5.0	2,887,974	
10.0	1.0	2,737,572	
	0.5	2,656,028	
	0.1	2,420,899	
	25.0	2,829,907	
	10.0	2,738,249	
40.0	5.0	2,656,803	
40.0	1.0	2,421,930	
	0.5	2,299,471	
	0.1	1,965,235	
	25.0	1,911,904	
	10.0	1,689,827	
70.0	5.0	1,513,226	
70.0	1.0	1,096,221	
	0.5	924,044	
	0.1	572,508	
	25.0	807,526	
	10.0	611,144	
100.0	5.0	482,654	
100.0	1.0	257,848	
	0.5	191,176	
	0.1	91,399	
	25.0	236,303	
	10.0	157,788	
130.0	5.0	114,774	
130.0	1.0	53,973	
	0.5	39,193	
	0.1	19,484	

Dynamic Modulus Results for NJDOT 25M64 Mixes

Tilcon - Oxford, NJ (9.5mm SMA)		National Paving - (12.5mm SMA)			
Temperature (F)	Frequency (Hz)	E* (psi)	Temperature (F)	Frequency (Hz)	E* (psi)
	25.0	2,439,793		25.0	2,433,196
	10.0	2,326,877		10.0	2,321,937
10.0	5.0	2,232,342	10.0	5.0	2,227,962
10.0	1.0	1,982,679	10.0	1.0	1,976,807
	0.5	1,862,942		0.5	1,855,111
	0.1	1,562,170		0.1	1,546,909
	25.0	2,048,746		25.0	2,076,970
	10.0	1,894,336		10.0	1,923,563
40.0	5.0	1,769,766	10.0	5.0	1,798,558
40.0	1.0	1,461,115	40.0	1.0	1,484,750
	0.5	1,323,402		0.5	1,343,178
	0.1	1,006,394		0.1	1,014,728
	25.0	1,028,167	70.0	25.0	1,117,476
	10.0	856,075		10.0	934,469
70.0	5.0	733,895		5.0	802,775
70.0	1.0	486,777		1.0	532,291
	0.5	398,709		0.5	434,768
	0.1	238,821		0.1	256,919
	25.0	358,931	100.0	25.0	430,106
	10.0	268,031		10.0	321,422
100.0	5.0	212,062		5.0	253,744
100.0	1.0	118,853		1.0	140,125
	0.5	91,656		0.5	106,941
	0.1	49,743		0.1	56,221
	25.0	111,162		25.0	143,917
	10.0	78,688	130.0	10.0	100,642
120.0	5.0	60,452		5.0	76,347
100.0	1.0	33,006		1.0	40,105
	0.5	25,653		0.5	30,569
	0.1	14,790		0.1	16,802

Dynamic Modulus Results for NJDOT Stone Mastic Asphalt Mixes

Trap Rock - Lambertville, NJ			
Temperature (F)	Frequency (Hz)	E* (psi)	
	25.0	2,369,637	
	10.0	2,239,862	
10.0	5.0	2,132,250	
10.0	1.0	1,852,729	
	0.5	1,721,165	
	0.1	1,398,288	
	25.0	1,588,141	
	10.0	1,402,102	
40.0	5.0	1,259,631	
40.0	1.0	935,860	
	0.5	804,863	
	0.1	535,170	
	25.0	588,080	
	10.0	453,620	
70.0	5.0	365,992	
70.0	1.0	209,690	
	0.5	161,188	
	0.1	83,819	
	25.0	151,202	
	10.0	104,526	
100.0	5.0	78,217	
100.0	1.0	39,058	
	0.5	28,883	
	0.1	14,526	
	25.0	38,531	
	10.0	25,866	
130.0	5.0	19,201	
130.0	1.0	9,876	
	0.5	7,543	
	0.1	4,248	

Dynamic Modulus Results for NJDOT Rich Bottom Layer (RBL)

Stavola Companies - Bound Brook, NJ			
Temperature (F)	Frequency (Hz)	E* (psi)	
	25.0	1,880,078	
	10.0	1,721,707	
10.0	5.0	1,596,226	
10.0	1.0	1,293,831	
	0.5	1,162,741	
	0.1	869,790	
	25.0	842,449	
	10.0	691,952	
40.0	5.0	588,038	
40.0	1.0	385,308	
	0.5	315,427	
	0.1	191,438	
	25.0	260,057	
	10.0	194,802	
70.0	5.0	155,372	
70.0	1.0	90,584	
	0.5	71,699	
	0.1	42,138	
	25.0	77,190	
	10.0	56,793	
100.0	5.0	45,230	
100.0	1.0	27,348	
	0.5	22,342	
	0.1	14,561	
	25.0	28,943	
	10.0	22,124	
130.0	5.0	18,273	
130.0	1.0	12,247	
	0.5	10,513	
	0.1	7,718	

Dynamic Modulus Results for NJDOT Reflective Crack Relief Interlayer (RCRI)